Aluminium laurate

Last updated
Aluminium laurate
Aluminum laurate.svg
Names
Other names
Aluminum dodecanoate, aluminum trilaurate [1]
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 230-632-4
PubChem CID
UNII
  • InChI=1S/3C12H24O2.Al/c3*1-2-3-4-5-6-7-8-9-10-11-12(13)14;/h3*2-11H2,1H3,(H,13,14);/q;;;+3/p-3
    Key: KMJRBSYFFVNPPK-UHFFFAOYSA-K
  • CCCCCCCCCCCC(=O)[O-].CCCCCCCCCCCC(=O)[O-].CCCCCCCCCCCC(=O)[O-].[Al+3]
Properties
C
36
H
69
AlO
6
Molar mass 624.9
AppearanceWhite powder
Boiling point 296 °C (565 °F; 569 K)
Soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Aluminium laurate is an metal-organic compound with the chemical formula C
36
H
69
AlO
6
. [2] The compound is classified as a metallic soap, i.e. a metal derivative of a fatty acid (lauric acid).

Contents

Physical properties

Aluminium laurate forms white powder. [3]

Soluble in water.

Use

Aluminium laurate is used as an anticaking agent, free-flow agent, or emulsifier. [4]

Related Research Articles

<span class="mw-page-title-main">Aluminium</span> Chemical element, symbol Al and atomic number 13

Aluminium is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals; about one-third that of steel. It has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic and ductile. It has one stable isotope: 27Al, which is highly abundant, making aluminium the twelfth-most common element in the universe. The radioactivity of 26Al is used in radiometric dating.

<span class="mw-page-title-main">Barium</span> Chemical element, symbol Ba and atomic number 56

Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.

<span class="mw-page-title-main">Scandium</span> Chemical element, symbol Sc and atomic number 21

Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the lanthanides. It was discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia.

<span class="mw-page-title-main">Sodium chloride</span> Chemical compound with formula NaCl

Sodium chloride, commonly known as salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g/mol respectively, 100 g of NaCl contains 39.34 g Na and 60.66 g Cl. Sodium chloride is the salt most responsible for the salinity of seawater and of the extracellular fluid of many multicellular organisms. In its edible form, salt is commonly used as a condiment and food preservative. Large quantities of sodium chloride are used in many industrial processes, and it is a major source of sodium and chlorine compounds used as feedstocks for further chemical syntheses. Another major application of sodium chloride is deicing of roadways in sub-freezing weather.

<span class="mw-page-title-main">Soil pH</span> Measure of the acidity or alkalinity in soils

Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the negative logarithm (base 10) of the activity of hydronium ions in a solution. In soils, it is measured in a slurry of soil mixed with water, and normally falls between 3 and 10, with 7 being neutral. Acid soils have a pH below 7 and alkaline soils have a pH above 7. Ultra-acidic soils and very strongly alkaline soils are rare.

<span class="mw-page-title-main">Aluminium hydroxide</span> Chemical compound

Aluminium hydroxide, Al(OH)3, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite. Aluminium hydroxide is amphoteric, i.e., it has both basic and acidic properties. Closely related are aluminium oxide hydroxide, AlO(OH), and aluminium oxide or alumina (Al2O3), the latter of which is also amphoteric. These compounds together are the major components of the aluminium ore bauxite. Aluminium hydroxide also forms a gelatinous precipitate in water.

A period 3 element is one of the chemical elements in the third row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when the periodic table skips a row and a chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The third period contains eight elements: sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine and argon. The first two, sodium and magnesium, are members of the s-block of the periodic table, while the others are members of the p-block. All of the period 3 elements occur in nature and have at least one stable isotope.

<span class="mw-page-title-main">Deodorant</span> Substance applied to the body to prevent or mask body odour

A deodorant is a substance applied to the body to prevent or mask body odor due to bacterial breakdown of perspiration or vaginal secretions, for example in the armpits, groin, or feet. A subclass of deodorants, called antiperspirants, prevents sweating itself, typically by blocking sweat glands. Antiperspirants are used on a wider range of body parts, at any place where sweat would be inconvenient or unsafe, since unwanted sweating can interfere with comfort, vision, and grip. Other types of deodorant allow sweating but prevent bacterial action on sweat, since human sweat only has a noticeable smell when it is decomposed by bacteria.

<span class="mw-page-title-main">Stearic acid</span> Eighteen-carbon straight-chain fatty acid

Stearic acid is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a waxy solid with the formula CH3(CH2)16CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Aluminium sulfate</span> Chemical compound

Aluminium sulfate is a salt with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking water and wastewater treatment plants, and also in paper manufacturing.

<span class="mw-page-title-main">Aluminium fluoride</span> Chemical compound

Aluminium fluoride refers to inorganic compounds with the formula AlF3·xH2O. They are all colorless solids. Anhydrous AlF3 is used in the production of aluminium metal. Several occur as minerals.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the organic reduction of any carbonyl group by a reducing agent.

Aluminium triacetate, formally named aluminium acetate, is a chemical compound with composition Al(CH
3
CO
2
)
3
. Under standard conditions it appears as a white, water-soluble solid that decomposes on heating at around 200 °C. The triacetate hydrolyses to a mixture of basic hydroxide / acetate salts, and multiple species co-exist in chemical equilibrium, particularly in aqueous solutions of the acetate ion; the name aluminium acetate is commonly used for this mixed system.

<span class="mw-page-title-main">Aluminium compounds</span>

Aluminium (or aluminum) combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and aluminium compounds tend towards covalency; this behaviour is similar to that of beryllium (Be2+), an example of a diagonal relationship. However, unlike all other post-transition metals, the underlying core under aluminium's valence shell is that of the preceding noble gas, whereas for gallium and indium it is that of the preceding noble gas plus a filled d-subshell, and for thallium and nihonium it is that of the preceding noble gas plus filled d- and f-subshells. Hence, aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do. Aluminium's electropositive behavior, high affinity for oxygen, and highly negative standard electrode potential are all more similar to those of scandium, yttrium, lanthanum, and actinium, which have ds2 configurations of three valence electrons outside a noble gas core: aluminium is the most electropositive metal in its group. Aluminium also bears minor similarities to the metalloid boron in the same group; AlX3 compounds are valence isoelectronic to BX3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts. Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class.

Copper(II) laurate is an metal-organic compound with the chemical formula Cu(C
11
H
23
COO)
2
. It is classified as a metallic soap, i.e. a metal derivative of a fatty acid.

Zinc laurate is an metal-organic compound with the chemical formula C
24
H
46
ZnO
4
. It is classified as a metallic soap, i.e. a metal derivative of a fatty acid.

Magnesium laurate is a metal-organic compound with the chemical formula C
24
H
46
MgO
4
. The compound is classified as a metallic soap, i.e. a metal derivative of a fatty acid.

Potassium laurate is a metal-organic compound with the chemical formula C
12
H
23
KO
2
. The compound is classified as a metallic soap, i.e. a metal derivative of a fatty acid.

References

  1. Burdock, George A. (1997). Encyclopedia of Food and Color Additives. CRC Press. p. 111. ISBN   978-0-8493-9412-6 . Retrieved 1 February 2023.
  2. "Aluminum Laurate". American Elements . Retrieved 1 February 2023.
  3. "Aluminum Laurate, 97.5-102.5%, 100g". Chemsavers. Retrieved 1 February 2023.
  4. Winter, Ruth (14 April 2009). A Consumer's Dictionary of Food Additives, 7th Edition: Descriptions in Plain English of More Than 12,000 Ingredients Both Harmful and Desirable Found in Foods. Crown. p. 74. ISBN   978-0-307-45259-7 . Retrieved 1 February 2023.