Aluminium glycinate

Last updated
Aluminium glycinate
Aluminium glycinate.png
Aluminium-glycinate-3D-balls.png
Clinical data
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
  • (2-Aminoacetyl)oxyaluminium dihydroxide
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
ECHA InfoCard 100.033.798 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C2H6AlNO4
Molar mass 135.055 g·mol−1
3D model (JSmol)
  • O[Al+]O.[O-]C(=O)CN
  • InChI=1S/C2H5NO2.Al.2H2O/c3-1-2(4)5;;;/h1,3H2,(H,4,5);;2*1H2/q;+3;;/p-3 Yes check.svgY
  • Key:BWZOPYPOZJBVLQ-UHFFFAOYSA-K Yes check.svgY
   (verify)

Aluminium glycinate (or dihydroxyaluminium aminoacetate) is an antacid. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Aluminium</span> Chemical element, symbol Al and atomic number 13

Aluminium is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals; about one-third that of steel. It has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic and ductile. It has one stable isotope: 27Al, which is highly abundant, making aluminium the twelfth-most common element in the universe. The radioactivity of 26Al is used in radiometric dating.

<span class="mw-page-title-main">Bauxite</span> Sedimentary rock rich in aluminium

Bauxite is a sedimentary rock with a relatively high aluminium content. It is the world's main source of aluminium and gallium. Bauxite consists mostly of the aluminium minerals gibbsite (Al(OH)3), boehmite (Y-AlO(OH)) and diaspore (α-AlO(OH)), mixed with the two iron oxides goethite (FeO(OH)) and haematite (Fe2O3), the aluminium clay mineral kaolinite (Al2Si2O5(OH)4) and small amounts of anatase (TiO2) and ilmenite (FeTiO3 or FeO.TiO2). Bauxite appears dull in luster and is reddish-brown, white, or tan.

<span class="mw-page-title-main">Magnesium</span> Chemical element, symbol Mg and atomic number 12

Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals it occurs naturally only in combination with other elements and it almost always has an oxidation state of +2. It reacts readily with air to form a thin passivation coating of magnesium oxide that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by electrolysis of magnesium salts obtained from brine. It is less dense than aluminium and is used primarily as a component in strong and lightweight alloys that contain aluminium.

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or Aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

<span class="mw-page-title-main">Precious metal</span> Rare, naturally occurring metallic chemical element of high economic and cultural value

Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Chemically, the precious metals tend to be less reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

<span class="mw-page-title-main">Aluminium hydroxide</span> Chemical compound

Aluminium hydroxide, Al(OH)3, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite. Aluminium hydroxide is amphoteric, i.e., it has both basic and acidic properties. Closely related are aluminium oxide hydroxide, AlO(OH), and aluminium oxide or alumina (Al2O3), the latter of which is also amphoteric. These compounds together are the major components of the aluminium ore bauxite. Aluminium hydroxide also forms a gelatinous precipitate in water.

<span class="mw-page-title-main">Aluminium foil</span> A thin, flexible sheet of aluminium, used for wrapping food and other purposes

Aluminium foil is aluminium prepared in thin metal leaves. The foil is pliable, and can be readily bent or wrapped around objects. Thin foils are fragile and are sometimes laminated with other materials such as plastics or paper to make them stronger and more useful.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Aluminium sulfate</span> Chemical compound

Aluminium sulfate is a salt with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking water and wastewater treatment plants, and also in paper manufacturing.

<span class="mw-page-title-main">Bingel reaction</span> Chemical reaction

The Bingel reaction in fullerene chemistry is a fullerene cyclopropanation reaction to a methanofullerene first discovered by C. Bingel in 1993 with the bromo derivative of diethyl malonate in the presence of a base such as sodium hydride or DBU. The preferred double bonds for this reaction on the fullerene surface are the shorter bonds at the junctions of two hexagons and the driving force is relief of steric strain.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

<span class="mw-page-title-main">Magnesium gluconate</span> Chemical compound

Magnesium gluconate is a compound with formula MgC12H22O14. It is the magnesium salt of gluconic acid.

<span class="mw-page-title-main">Aluminium monochloride</span> Chemical compound

Aluminium monochloride, or chloridoaluminium is the metal halide with the formula AlCl. Aluminium monochloride as a molecule is thermodynamically stable at high temperature and low pressure only. This compound is produced as a step in the Alcan process to smelt aluminium from an aluminium-rich alloy. When the alloy is placed in a reactor that is heated to 1,300 °C and mixed with aluminium trichloride, a gas of aluminium monochloride is produced.

<span class="mw-page-title-main">Magnesium malate</span> Chemical compound

Magnesium malate, the magnesium salt of malic acid, is a mineral supplement often used for nutritional concerns. It is represented by the chemical formula C4H4MgO5 and has a molecular weight of 156.376 g/mol. Magnesium malate is discussed as being a more bioavailable form of magnesium, along with other forms such as citrate and glycinate.

<span class="mw-page-title-main">Aminopolycarboxylic acid</span>

An aminopolycarboxylic acid is a chemical compound containing one or more nitrogen atoms connected through carbon atoms to two or more carboxyl groups. Aminopolycarboxylates that have lost acidic protons form strong complexes with metal ions. This property makes aminopolycarboxylic acids useful complexone in a wide variety of chemical, medical, and environmental applications.

<span class="mw-page-title-main">Aluminium(II) oxide</span> Chemical compound

Aluminium(II) oxide or aluminium monoxide is a compound of aluminium and oxygen with the chemical formula AlO. It has been detected in the gas phase after explosion of aluminized grenades in the upper atmosphere and in stellar absorption spectra.

Magnesium salts are available as a medication in a number of formulations. They are used to treat magnesium deficiency, low blood magnesium, eclampsia, and several other conditions. Magnesium is important to health.

Magnesium glycinate, also known as magnesium diglycinate or magnesium bisglycinate, is the magnesium salt of glycine, and is sold as a dietary supplement. It contains 14.1% elemental magnesium by mass. Accordingly, 141 mg of elemental magnesium is contained in 1000 mg of magnesium glycinate.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

References

  1. "Aluminium glycinate". pubchem.ncbi.nlm.nih.gov. Retrieved 31 January 2019.