Orthocarbonic acid

Last updated
Orthocarbonic acid
Stereo skeletal formula of orthocarbonic acid Orthocarbonic acid Structural Formulae.png
Stereo skeletal formula of orthocarbonic acid
Ball and stick model of orthocarbonic acid Orthocarbonic-acid-Spartan-MP2-3D-balls-B.png
Ball and stick model of orthocarbonic acid
Names
Preferred IUPAC name
Methanetetrol [1]
Systematic IUPAC name
Orthocarbonic acid
Other names
  • Carbon tetrahydroxide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/CH4O4/c2-1(3,4)5/h2-5H Yes check.svgY
    Key: RXCVUXLCNLVYIA-UHFFFAOYSA-N Yes check.svgY
  • OC(O)(O)O
Properties
C(OH)4
Molar mass 80.039 g·mol−1
Related compounds
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Orthocarbonic acid, carbon hydroxide, methanetetrol is the name given to a hypothetical compound with the chemical formula H4CO4 or C(OH)4. Its molecular structure consists of a single carbon atom bonded to four hydroxyl groups. It would be therefore a fourfold alcohol. In theory it could lose four protons to give the hypothetical oxocarbon anion orthocarbonateCO4−4, and is therefore considered an oxoacid of carbon.

Contents

Orthocarbonic acid is highly unstable. Calculations show that it decomposes into carbonic acid and water: [2] [3]

H4CO4 → H2CO3 + H2O

Orthocarbonic acid is one of the group of ortho acids that have the general structure of RC(OH)3. The term ortho acid is also used to refer to the most hydroxylated acid in a set of oxoacids.

Researchers predict that orthocarbonic acid is stable at high pressure; hence it may form in the interior of the ice giant planets Uranus and Neptune, where water and methane are common. [4]

Orthocarbonate anions

By loss of one through four protons, orthocarbonic acid could yield four anions: H3CO4 (trihydrogen orthocarbonate), H2CO2−4 (dihydrogen orthocarbonate), HCO3−4 (hydrogen orthocarbonate), and CO4−4 (orthocarbonate).

Numerous salts of fully deprotonated CO4−4, such as Ca2CO4 (calcium orthocarbonate) or Sr2CO4 (strontium orthocarbonate), have been synthesized under high pressure conditions and structurally characterized by X-ray diffraction. [5] [6] [7] Strontium orthocarbonate, Sr2CO4, is stable at atmospheric pressure. Orthocarbonate is tetrahedral in shape, and is isoelectronic to orthonitrate. The C-O distance is 1.41  Å. [8] Sr3(CO4)O is an oxide orthocarbonate (tristrontium orthocarbonate oxide), also stable at atmospheric pressure. [9]

Orthocarbonate esters

The tetravalent moiety CO4 is found in stable organic compounds; they are formally esters of orthocarbonic acid, and therefore are called orthocarbonates. For example, tetraethoxymethane can be prepared by the reaction between chloropicrin and sodium ethoxide in ethanol. [10] Polyorthocarbonates are stable polymers that might have applications in absorbing organic solvents in waste treatment processes, [11] or in dental restorative materials. [12] The explosive trinitroethylorthocarbonate possesses an orthocarbonate core.

A linear polymer which can be described as a (spiro) orthocarbonate ester of pentaerythritol, whose formula could be written as [(−CH2)2C(CH2−)2 (−O)2C(O−)2]n, was synthesized in 2002. [13]

The carbon atom in the spiro ester bis-catechol orthocarbonate was found to have tetrahedral bond geometry, contrasting with the square planar geometry of the silicon atom in the analogous orthosilicate ester. [14]

Orthocarbonates may exist in several conformers, that differ by the relative rotation of the C–O–C bridges. The conformation structures of some esters, such as tetraphenoxymethane, tetrakis(3,5-dimethyl-phenoxy)methane, and tetrakis(4-bromophenoxy)methane have been determined by X-ray diffraction. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Pentaerythritol</span> Chemical compound

Pentaerythritol is an organic compound with the formula C(CH2OH)4. The molecular structure can be described as a neopentane with one hydrogen atom in each methyl group replaced by a hydroxyl (–OH) group. It is therefore a polyol, specifically a tetrol.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group or hydrogen in the case of formyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula R−C(=O)−, where R represents an organyl group or hydrogen. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

<span class="mw-page-title-main">Iron oxide</span> Class of chemical compounds composed of iron and oxygen

An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Darzens reaction</span>

The Darzens reaction is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester". This reaction was discovered by the organic chemist Auguste Georges Darzens in 1904.

<span class="mw-page-title-main">Boronic acid</span> Organic compound of the form R–B(OH)2

A boronic acid is an organic compound related to boric acid in which one of the three hydroxyl groups is replaced by an alkyl or aryl group. As a compound containing a carbon–boron bond, members of this class thus belong to the larger class of organoboranes.

A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, and in organic compounds such as alcohols, ethers, and carbonyl compounds. Oxygen has 6 valence electrons of its own and tends to fill its outer shell with 8 electrons by sharing electrons with other atoms to form covalent bonds, accepting electrons to form an anion, or a combination of the two. In neutral compounds, an oxygen atom can form a triple bond with carbon, while a carbon atom can form up to four single bonds or two double bonds with oxygen.

Natalia Dubrovinskaia is a Swedish geologist of Russian origin.

<span class="mw-page-title-main">Oxocarbon anion</span> Negatively-charged molecule made of carbon and oxygen

In chemistry, an oxocarbon anion is a negative ion consisting solely of carbon and oxygen atoms, and therefore having the general formula C
x
On
y
for some integers x, y, and n.

<span class="mw-page-title-main">Peroxycarbonate</span> Polyatomic anion

In chemistry, peroxycarbonate or percarbonate is a divalent anion with formula CO2−
4
. It is an oxocarbon anion that consists solely of carbon and oxygen. It is the anion of peroxycarbonic acid also called hydroperoxyformic acid, HO−O−CO−OH.

<span class="mw-page-title-main">Dicarbonate</span> Chemical compound

A dicarbonate, also known as a pyrocarbonate, is a chemical containing the divalent −O−C(=O)−O−C(=O)−O− or −C2O5 functional group, which consists of two carbonate groups sharing an oxygen atom. It is one of polycarbonate functional groups. These compounds can be viewed as derivatives of the hypothetical compound dicarbonic acid, HO−C(=O)−O−C(=O)−OH or H2C2O5. Three important organic compounds containing this group are:

Aluminium carbonate (Al2(CO3)3), is a carbonate of aluminium. It is not well characterized; one authority says that simple carbonates of aluminium are not known. However related compounds are known, such as the basic sodium aluminium carbonate mineral dawsonite (NaAlCO3(OH)2) and hydrated basic aluminium carbonate minerals scarbroite (Al5(CO3)(OH)13•5(H2O)) and hydroscarbroite (Al14(CO3)3(OH)36•nH2O).

Polycarbonyl, is a solid, metastable, and explosive polymer of carbon monoxide. The polymer is produced by exposing carbon monoxide to high pressures. The structure of the solid appears amorphous, but may include a zigzag of equally-spaced CO groups.

<span class="mw-page-title-main">Tetramethoxymethane</span> Chemical compound

Tetramethoxymethane is a chemical compound which is formally formed by complete methylation of the hypothetical orthocarbonic acid C(OH)4.

<span class="mw-page-title-main">Tetraethoxymethane</span> Chemical compound

Tetraethoxymethane is a chemical compound which is formally formed by complete ethylation of the hypothetical orthocarbonic acid C(OH)4 (orthocarbonic acid violates the Erlenmeyer rule and is unstable in free state).

References

  1. "Methanetetrol - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.
  2. Bohm S.; Antipova D.; Kuthan J. (1997). "A Study of Methanetetraol Dehydration to Carbonic Acid". International Journal of Quantum Chemistry. 62 (3): 315–322. doi:10.1002/(SICI)1097-461X(1997)62:3<315::AID-QUA10>3.0.CO;2-8.
  3. Carboxylic Acids and Derivatives Archived 2017-09-13 at the Wayback Machine IUPAC Recommendations on Organic & Biochemical Nomenclature
  4. G. Saleh; A. R. Oganov (2016). "Novel Stable Compounds in the C-H-O Ternary System at High Pressure". Scientific Reports. 6: 32486. Bibcode:2016NatSR...632486S. doi:10.1038/srep32486. PMC   5007508 . PMID   27580525.
  5. Sagatova, Dinara; Shatskiy, Anton; Sagatov, Nursultan; Gavryushkin, Pavel N.; Litasov, Konstantin D. (2020). "Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle". Lithos. 370–371: 105637. Bibcode:2020Litho.37005637S. doi:10.1016/j.lithos.2020.105637. ISSN   0024-4937. S2CID   224909120.
  6. Binck, Jannes; Laniel, Dominique; Bayarjargal, Lkhamsuren; Khandarkhaeva, Saiana; Fedotenko, Timofey; Aslandukov, Andrey; Milman, Victor; Glazyrin, Konstantin; Milman, Victor; Chariton, Stella; Prakapenka, Vitali B.; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Winkler, Björn (2022). "Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at P-T conditions of Earth's transition zone and lower mantle". American Mineralogist. 107 (3): 336–342. Bibcode:2022AmMin.107..336B. doi:10.2138/am-2021-7872. S2CID   242847474.
  7. Laniel, Dominique; Binck, Jannes; Winkler, Björn; Vogel, Sebastian; Fedotenko, Timofey; Chariton, Stella; Prakapenka, Vitali; Milman, Victor; Schnick, Wolfgang; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2021). "Synthesis, crystal structure and structure–property relations of strontium orthocarbonate, Sr2CO4". Acta Crystallographica Section B. 77 (1): 131–137. Bibcode:2021AcCrB..77..131L. doi: 10.1107/S2052520620016650 . ISSN   2052-5206. PMC   7941283 .
  8. Spahr, Dominik; Binck, Jannes; Bayarjargal, Lkhamsuren; Luchitskaia, Rita; Morgenroth, Wolfgang; Comboni, Davide; Milman, Victor; Winkler, Björn (4 April 2021). "Tetrahedrally Coordinated sp3-Hybridized Carbon in Sr2CO4 Orthocarbonate at Ambient Conditions". Inorganic Chemistry. 60 (8): 5419–5422. doi: 10.1021/acs.inorgchem.1c00159 . PMID   33813824.
  9. Spahr, Dominik; König, Jannes; Bayarjargal, Lkhamsuren; Gavryushkin, Pavel N.; Milman, Victor; Liermann, Hanns-Peter; Winkler, Björn (4 October 2021). "Sr 3 [CO 4 ]O Antiperovskite with Tetrahedrally Coordinated sp 3 -Hybridized Carbon and OSr 6 Octahedra". Inorganic Chemistry. 60 (19): 14504–14508. doi:10.1021/acs.inorgchem.1c01900. PMID   34520201. S2CID   237514625.
  10. Orthocarbonic acid, tetraethyl ester Archived 2012-09-20 at the Wayback Machine Organic Syntheses, Coll. Vol. 4, p. 457 (1963); Vol. 32, p. 68 (1952).
  11. Sonmez, H.B.; Wudl, F. (2005). "Cross-linked poly(orthocarbonate)s as organic solvent sorbents". Macromolecules. 38 (5): 1623–1626. Bibcode:2005MaMol..38.1623S. doi:10.1021/ma048731x.
  12. Stansbury, J.W. (1992). "Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization". Journal of Dental Research. 71 (7): 1408–1412. doi:10.1177/00220345920710070901. PMID   1629456. S2CID   24589493. Archived from the original on 2008-07-08. Retrieved 2008-06-19.
  13. David T. Vodak, Matthew Braun, Lykourgos Iordanidis, Jacques Plévert, Michael Stevens, Larry Beck, John C. H. Spence, Michael O'Keeffe, Omar M. Yaghi (2002): "One-Step Synthesis and Structure of an Oligo(spiro-orthocarbonate)". Journal of the American Chemical Society, volume 124, issue 18, pages 4942–4943. doi : 10.1021/ja017683i
  14. H. Meyer, G. Nagorsen (1979): "Structure and reactivity of the orthocarbonic and orthosilicic acid esters of pyrocatechol". Angewandte Chemie International Edition in English, volume 18, issue 7, pages 551-553. doi : 10.1002/anie.197905511
  15. N. Narasimhamurthy, H. Manohar, Ashoka G. Samuelson, Jayaraman Chandrasekhar (1990): "Cumulative anomeric effect: A theoretical and x-ray diffraction study of orthocarbonates". Journal of the American Chemical Society, volume 112, issue 8, pages 2937–2941. doi : 10.1021/ja00164a015