Orthocarbonic acid

Last updated
Orthocarbonic acid
Stereo skeletal formula of orthocarbonic acid Orthocarbonic acid Structural Formulae.png
Stereo skeletal formula of orthocarbonic acid
Ball and stick model of orthocarbonic acid Orthocarbonic-acid-Spartan-MP2-3D-balls-B.png
Ball and stick model of orthocarbonic acid
Names
Preferred IUPAC name
Methanetetrol [1]
Systematic IUPAC name
Orthocarbonic acid
Other names
  • Carbon tetrahydroxide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/CH4O4/c2-1(3,4)5/h2-5H Yes check.svgY
    Key: RXCVUXLCNLVYIA-UHFFFAOYSA-N Yes check.svgY
  • OC(O)(O)O
Properties
C(OH)4
Molar mass 80.039 g·mol−1
Related compounds
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Orthocarbonic acid (also known as carbon hydroxide or methanetetrol) is a chemical compound with the chemical formula H4CO4 or C(OH)4. Its molecular structure consists of a single carbon atom bonded to four hydroxyl groups. It would be therefore a fourfold alcohol. In theory, it could lose four protons to give the hypothetical oxocarbon anion orthocarbonateCO4−4, and is therefore considered an oxoacid of carbon.

Contents

Orthocarbonic acid is highly unstable and long held to be a hypothetical chemical compound. Calculations show that it decomposes into carbonic acid and water: [2] [3]

H4CO4 → H2CO3 + H2O

However, orthocarbonic acid was first synthesized in 2025 from the electron-irradiation of a frozen mixture of water and carbon dioxide and identified by mass spectrometry. [4]

Researchers predict that orthocarbonic acid is stable at high pressure; thus, it may form in the interior of the ice giant planets Uranus and Neptune, where water and methane are common. [5]

Orthocarbonate anions

By loss of one through four protons, orthocarbonic acid could yield four anions: H3CO4 (trihydrogen orthocarbonate), H2CO2−4 (dihydrogen orthocarbonate), HCO3−4 (hydrogen orthocarbonate), and CO4−4 (orthocarbonate).

Numerous salts of fully deprotonated CO4−4, such as Ca2CO4 (calcium orthocarbonate) or Sr2CO4 (strontium orthocarbonate), have been synthesized under high pressure conditions and structurally characterized by X-ray diffraction. [6] [7] [8] [9] Strontium orthocarbonate, Sr2CO4, is stable at atmospheric pressure. Orthocarbonate is tetrahedral in shape, and is isoelectronic to orthonitrate. The C-O distance is 1.41  Å. [10] Sr3(CO4)O is an oxide orthocarbonate (tristrontium orthocarbonate oxide), also stable at atmospheric pressure. [11]

Orthocarbonate esters

The tetravalent moiety CO4 is found in stable organic compounds; they are formally esters of orthocarbonic acid, and therefore are called orthocarbonates. For example, tetraethoxymethane can be prepared by the reaction between chloropicrin and sodium ethoxide in ethanol. [12] Polyorthocarbonates are stable polymers that might have applications in absorbing organic solvents in waste treatment processes, [13] or in dental restorative materials. [14] The explosive trinitroethylorthocarbonate possesses an orthocarbonate core.

A linear polymer which can be described as a (spiro) orthocarbonate ester of pentaerythritol, whose formula could be written as [(−CH2)2C(CH2−)2 (−O)2C(O−)2]n, was synthesized in 2002. [15]

The carbon atom in the spiro ester bis-catechol orthocarbonate was found to have tetrahedral bond geometry, contrasting with the square planar geometry of the silicon atom in the analogous orthosilicate ester. [16]

Orthocarbonates may exist in several conformers, that differ by the relative rotation of the C–O–C bridges. The conformation structures of some esters, such as tetraphenoxymethane, tetrakis(3,5-dimethyl-phenoxy)methane, and tetrakis(4-bromophenoxy)methane have been determined by X-ray diffraction. [17]

See also

References

  1. "Methanetetrol - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.
  2. Bohm S.; Antipova D.; Kuthan J. (1997). "A Study of Methanetetraol Dehydration to Carbonic Acid". International Journal of Quantum Chemistry. 62 (3): 315–322. doi:10.1002/(SICI)1097-461X(1997)62:3<315::AID-QUA10>3.0.CO;2-8.
  3. Carboxylic Acids and Derivatives Archived 2017-09-13 at the Wayback Machine IUPAC Recommendations on Organic & Biochemical Nomenclature
  4. >Marks, Joshua H.; Bai, Xilin; Nikolayev, Anatoliy A.; Gong, Qi’ang; McAnally, Mason; Wang, Jia; Pan, Yang; Fortenberry, Ryan C.; Mebel, Alexander M.; Yang, Yao; Kaiser, Ralf I. (14 July 2025). "Methanetetrol and the final frontier in ortho acids". Nature Communications. doi:10.1038/s41467-025-61561-z. PMC   12260057 .
  5. G. Saleh; A. R. Oganov (2016). "Novel Stable Compounds in the C-H-O Ternary System at High Pressure". Scientific Reports. 6: 32486. Bibcode:2016NatSR...632486S. doi:10.1038/srep32486. PMC   5007508 . PMID   27580525.{{cite journal}}: CS1 maint: article number as page number (link)
  6. Sagatova, Dinara; Shatskiy, Anton; Sagatov, Nursultan; Gavryushkin, Pavel N.; Litasov, Konstantin D. (2020). "Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle". Lithos. 370–371: 105637. Bibcode:2020Litho.37005637S. doi:10.1016/j.lithos.2020.105637. ISSN   0024-4937. S2CID   224909120.{{cite journal}}: CS1 maint: article number as page number (link)
  7. Binck, Jannes; Laniel, Dominique; Bayarjargal, Lkhamsuren; Khandarkhaeva, Saiana; Fedotenko, Timofey; Aslandukov, Andrey; Milman, Victor; Glazyrin, Konstantin; Milman, Victor; Chariton, Stella; Prakapenka, Vitali B.; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Winkler, Björn (2022). "Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at P-T conditions of Earth's transition zone and lower mantle". American Mineralogist. 107 (3): 336–342. Bibcode:2022AmMin.107..336B. doi:10.2138/am-2021-7872. S2CID   242847474.
  8. Laniel, Dominique; Binck, Jannes; Winkler, Björn; Vogel, Sebastian; Fedotenko, Timofey; Chariton, Stella; Prakapenka, Vitali; Milman, Victor; Schnick, Wolfgang; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2021). "Synthesis, crystal structure and structure–property relations of strontium orthocarbonate, Sr2CO4". Acta Crystallographica Section B. 77 (1): 131–137. Bibcode:2021AcCrB..77..131L. doi: 10.1107/S2052520620016650 . ISSN   2052-5206. PMC   7941283 .
  9. Gavryushkin, Pavel N.; Sagatova, Dinara N.; Sagatov, Nursultan; Litasov, Konstantin D. (2021). "Formation of Mg-Orthocarbonate through the Reaction MgCO3 + MgO = Mg2CO4 at Earth's Lower Mantle P–T Conditions". Crystal Growth & Design. 21 (5): 2986–2992. doi:10.1021/acs.cgd.1c00140.
  10. Spahr, Dominik; Binck, Jannes; Bayarjargal, Lkhamsuren; Luchitskaia, Rita; Morgenroth, Wolfgang; Comboni, Davide; Milman, Victor; Winkler, Björn (4 April 2021). "Tetrahedrally Coordinated sp3-Hybridized Carbon in Sr2CO4 Orthocarbonate at Ambient Conditions". Inorganic Chemistry. 60 (8): 5419–5422. doi: 10.1021/acs.inorgchem.1c00159 . PMID   33813824.
  11. Spahr, Dominik; König, Jannes; Bayarjargal, Lkhamsuren; Gavryushkin, Pavel N.; Milman, Victor; Liermann, Hanns-Peter; Winkler, Björn (4 October 2021). "Sr 3 [CO 4 ]O Antiperovskite with Tetrahedrally Coordinated sp 3 -Hybridized Carbon and OSr 6 Octahedra". Inorganic Chemistry. 60 (19): 14504–14508. doi:10.1021/acs.inorgchem.1c01900. PMID   34520201. S2CID   237514625.
  12. Orthocarbonic acid, tetraethyl ester Archived 2012-09-20 at the Wayback Machine Organic Syntheses, Coll. Vol. 4, p. 457 (1963); Vol. 32, p. 68 (1952).
  13. Sonmez, H.B.; Wudl, F. (2005). "Cross-linked poly(orthocarbonate)s as organic solvent sorbents". Macromolecules. 38 (5): 1623–1626. Bibcode:2005MaMol..38.1623S. doi:10.1021/ma048731x.
  14. Stansbury, J.W. (1992). "Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization". Journal of Dental Research. 71 (7): 1408–1412. doi:10.1177/00220345920710070901. PMID   1629456. S2CID   24589493. Archived from the original on 2008-07-08. Retrieved 2008-06-19.
  15. David T. Vodak, Matthew Braun, Lykourgos Iordanidis, Jacques Plévert, Michael Stevens, Larry Beck, John C. H. Spence, Michael O'Keeffe, Omar M. Yaghi (2002): "One-Step Synthesis and Structure of an Oligo(spiro-orthocarbonate)". Journal of the American Chemical Society, volume 124, issue 18, pages 4942–4943. doi : 10.1021/ja017683i
  16. H. Meyer, G. Nagorsen (1979): "Structure and reactivity of the orthocarbonic and orthosilicic acid esters of pyrocatechol". Angewandte Chemie International Edition in English, volume 18, issue 7, pages 551-553. doi : 10.1002/anie.197905511
  17. N. Narasimhamurthy, H. Manohar, Ashoka G. Samuelson, Jayaraman Chandrasekhar (1990): "Cumulative anomeric effect: A theoretical and x-ray diffraction study of orthocarbonates". Journal of the American Chemical Society, volume 112, issue 8, pages 2937–2941. doi : 10.1021/ja00164a015