Orthocarbonic acid

Last updated
Orthocarbonic acid
Stereo skeletal formula of orthocarbonic acid Orthocarbonic acid Structural Formulae.png
Stereo skeletal formula of orthocarbonic acid
Ball and stick model of orthocarbonic acid Orthocarbonic-acid-Spartan-MP2-3D-balls-B.png
Ball and stick model of orthocarbonic acid
Names
Preferred IUPAC name
Methanetetrol [1]
Systematic IUPAC name
Orthocarbonic acid
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/CH4O4/c2-1(3,4)5/h2-5H Yes check.svgY
    Key: RXCVUXLCNLVYIA-UHFFFAOYSA-N Yes check.svgY
  • OC(O)(O)O
Properties
C(OH)4
Molar mass 80.039 g·mol−1
Related compounds
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Orthocarbonic acid, carbon hydroxide or methanetetrol is the name given to a hypothetical compound with the chemical formula H4CO4 or C(OH)4. Its molecular structure consists of a single carbon atom bonded to four hydroxyl groups. It would be therefore a fourfold alcohol. In theory it could lose four protons to give the hypothetical oxocarbon anion orthocarbonateCO4−4, and is therefore considered an oxoacid of carbon.

Contents

Orthocarbonic acid is highly unstable. Calculations show that it decomposes spontaneously into carbonic acid and water: [2] [3]

H4CO4 → H2CO3 + H2O

Orthocarbonic acid is one of the group of ortho acids that have the general structure of RC(OH)3. The term ortho acid is also used to refer to the most hydroxylated acid in a set of oxoacids.

Researchers predict that orthocarbonic acid is stable at high pressure; hence it may form in the interior of the ice giant planets Uranus and Neptune, where water and methane are common. [4]

Orthocarbonate anions

By loss of one through four protons, orthocarbonic acid could yield four anions: H3CO4 (trihydrogen orthocarbonate), H2CO2−4 (dihydrogen orthocarbonate), HCO3−4 (hydrogen orthocarbonate), and CO4−4 (orthocarbonate).

Numerous salts of fully deprotonated CO4−4, such as Ca2CO4 (calcium orthocarbonate) or Sr2CO4 (strontium orthocarbonate), have been synthesized under high pressure conditions and structurally characterized by X-ray diffraction. [5] [6] [7] Strontium orthocarbonate, Sr2CO4, is stable at atmospheric pressure. Orthocarbonate is tetrahedral in shape, and is isoelectronic to orthonitrate. The C-O distance is 1.41  Å. [8] Sr3(CO4)O is an oxide orthocarbonate (tristrontium orthocarbonate oxide), also stable at atmospheric pressure. [9]

Orthocarbonate esters

The tetravalent moiety CO4 is found in stable organic compounds; they are formally esters of orthocarbonic acid, and therefore are called orthocarbonates. For example, tetraethoxymethane can be prepared by the reaction between chloropicrin and sodium ethoxide in ethanol. [10] Polyorthocarbonates are stable polymers that might have applications in absorbing organic solvents in waste treatment processes, [11] or in dental restorative materials. [12] The explosive trinitroethylorthocarbonate possesses an orthocarbonate core.

See also

Related Research Articles

<span class="mw-page-title-main">Carbonate</span> Salt or ester of carbonic acid

A carbonate is a salt of carbonic acid, H2CO3, characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate groupO=C(−O−)2.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Weathering</span> Deterioration of rocks and minerals through exposure to the elements

Weathering is the deterioration of rocks, soils and minerals through contact with water, atmospheric gases, sunlight, and biological organisms. Weathering occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.

<span class="mw-page-title-main">Iron oxide</span> Class of chemical compounds composed of iron and oxygen

Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of which is rust.

<span class="mw-page-title-main">Dissolved inorganic carbon</span> Sum of inorganic carbon species in a solution

Dissolved inorganic carbon (DIC) is the sum of the aqueous species of inorganic carbon in a solution. Carbon compounds can be distinguished as either organic or inorganic, and as dissolved or particulate, depending on their composition. Organic carbon forms the backbone of key component of organic compounds such as – proteins, lipids, carbohydrates, and nucleic acids.

<span class="mw-page-title-main">Aggregated diamond nanorod</span> Nanocrystalline form of diamond

Aggregated diamond nanorods, or ADNRs, are a nanocrystalline form of diamond, also known as nanodiamond or hyperdiamond.

<span class="mw-page-title-main">Magnesium nitride</span> Chemical compound

Magnesium nitride, which possesses the chemical formula Mg3N2, is an inorganic compound of magnesium and nitrogen. At room temperature and pressure it is a greenish yellow powder.

A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, and in organic compounds such as alcohols, ethers, carbonyl compounds and oxalates. Oxygen has 6 valence electrons of its own and tends to fill its outer shell with 8 electrons by sharing electrons with other atoms to form covalent bonds, accepting electrons to form an anion, or a combination of the two. In neutral compounds, an oxygen atom can form up to two single bonds or one double bond with carbon, while a carbon atom can form up to four single bonds or two double bonds with oxygen.

Natalia Dubrovinskaia is a Swedish geologist of Russian origin.

<span class="mw-page-title-main">Oxocarbon anion</span> Negatively-charged molecule made of carbon and oxygen

In chemistry, an oxocarbon anion is a negative ion consisting solely of carbon and oxygen atoms, and therefore having the general formula C
x
On
y
for some integers x, y, and n.

<span class="mw-page-title-main">Dicarbonate</span> Chemical compound

A dicarbonate, also known as a pyrocarbonate, is a chemical containing the divalent −O−C(=O)−O−C(=O)−O− or −C2O5 functional group, which consists of two carbonate groups sharing an oxygen atom. These compounds can be viewed as derivatives of the hypothetical compound dicarbonic acid, HO−C(=O)−O−C(=O)−OH or H2C2O5. Two important organic compounds containing this group are dimethyl dicarbonate H3C−C2O5−CH3 and di-tert-butyl dicarbonate(H3C−)3C−C2O5−C(−CH3)3.

Aluminium carbonate (Al2(CO3)3), is a carbonate of aluminium. It is not well characterized; one authority says that simple carbonates of aluminium are not known. However related compounds are known, such as the basic sodium aluminium carbonate mineral dawsonite (NaAlCO3(OH)2) and hydrated basic aluminium carbonate minerals scarbroite (Al5(CO3)(OH)13•5(H2O)) and hydroscarbroite (Al14(CO3)3(OH)36•nH2O).

Superdense carbon allotropes are proposed configurations of carbon atoms that result in a stable material with a higher density than diamond. Few hypothetical carbon allotropes denser than diamond are known. All these allotropes can be divided at two groups: the first are hypothetically stable at ambient conditions; the second are high-pressure carbon allotropes which become quasi-stable only at high pressure.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

Polycarbonyl, is a solid, metastable, and explosive polymer of carbon monoxide. The polymer is produced by exposing carbon monoxide to high pressures. The structure of the solid appears amorphous, but may include a zigzag of equally-spaced CO groups.

Ester är jätte modig och jätte bra. Hon är natur begovning och född 8 oktobsr.

<span class="mw-page-title-main">Tetraethoxymethane</span> Chemical compound

Tetraethoxymethane is a chemical compound which is formally formed by complete ethylation of the hypothetical orthocarbonic acid C(OH)4 (orthocarbonic acid violates the Erlenmeyer rule and is unstable in free state).

<span class="mw-page-title-main">Deep carbon cycle</span> Movement of carbon through Earths mantle and core

The deep carbon cycle is geochemical cycle (movement) of carbon through the Earth's mantle and core. It forms part of the carbon cycle and is intimately connected to the movement of carbon in the Earth's surface and atmosphere. By returning carbon to the deep Earth, it plays a critical role in maintaining the terrestrial conditions necessary for life to exist. Without it, carbon would accumulate in the atmosphere, reaching extremely high concentrations over long periods of time.

<span class="mw-page-title-main">Total inorganic carbon</span> Sum of the inorganic carbon species

Total inorganic carbon is the sum of the inorganic carbon species.

Polynitrides are solid chemical compounds with a large amount of nitrogen, beyond what would be expected from valencies. Some with N2 ions are termed pernitrides. Azides are not considered polynitrides, although pentazolates are.

References

  1. "Methanetetrol - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.
  2. Bohm S.; Antipova D.; Kuthan J. (1997). "A Study of Methanetetraol Dehydration to Carbonic Acid". International Journal of Quantum Chemistry. 62 (3): 315–322. doi:10.1002/(SICI)1097-461X(1997)62:3<315::AID-QUA10>3.0.CO;2-8.
  3. Carboxylic Acids and Derivatives Archived 2017-09-13 at the Wayback Machine IUPAC Recommendations on Organic & Biochemical Nomenclature
  4. G. Saleh; A. R. Oganov (2016). "Novel Stable Compounds in the C-H-O Ternary System at High Pressure". Scientific Reports. 6: 32486. Bibcode:2016NatSR...632486S. doi:10.1038/srep32486. PMC   5007508 . PMID   27580525.
  5. Sagatova, Dinara; Shatskiy, Anton; Sagatov, Nursultan; Gavryushkin, Pavel N.; Litasov, Konstantin D. (2020). "Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle". Lithos. 370–371: 105637. Bibcode:2020Litho.37005637S. doi:10.1016/j.lithos.2020.105637. ISSN   0024-4937. S2CID   224909120.
  6. Binck, Jannes; Laniel, Dominique; Bayarjargal, Lkhamsuren; Khandarkhaeva, Saiana; Fedotenko, Timofey; Aslandukov, Andrey; Milman, Victor; Glazyrin, Konstantin; Milman, Victor; Chariton, Stella; Prakapenka, Vitali B.; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Winkler, Björn (2022). "Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at P-T conditions of Earth's transition zone and lower mantle". American Mineralogist. 107 (3): 336–342. Bibcode:2022AmMin.107..336B. doi:10.2138/am-2021-7872. S2CID   242847474.
  7. Laniel, Dominique; Binck, Jannes; Winkler, Björn; Vogel, Sebastian; Fedotenko, Timofey; Chariton, Stella; Prakapenka, Vitali; Milman, Victor; Schnick, Wolfgang; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2021). "Synthesis, crystal structure and structure–property relations of strontium orthocarbonate, Sr2CO4". Acta Crystallographica Section B. 77 (1): 131–137. Bibcode:2021AcCrB..77..131L. doi: 10.1107/S2052520620016650 . ISSN   2052-5206. PMC   7941283 .
  8. Spahr, Dominik; Binck, Jannes; Bayarjargal, Lkhamsuren; Luchitskaia, Rita; Morgenroth, Wolfgang; Comboni, Davide; Milman, Victor; Winkler, Björn (4 April 2021). "Tetrahedrally Coordinated sp3-Hybridized Carbon in Sr2CO4 Orthocarbonate at Ambient Conditions". Inorganic Chemistry. 60 (8): 5419–5422. doi: 10.1021/acs.inorgchem.1c00159 . PMID   33813824.
  9. Spahr, Dominik; König, Jannes; Bayarjargal, Lkhamsuren; Gavryushkin, Pavel N.; Milman, Victor; Liermann, Hanns-Peter; Winkler, Björn (4 October 2021). "Sr 3 [CO 4 ]O Antiperovskite with Tetrahedrally Coordinated sp 3 -Hybridized Carbon and OSr 6 Octahedra". Inorganic Chemistry. 60 (19): 14504–14508. doi:10.1021/acs.inorgchem.1c01900. PMID   34520201. S2CID   237514625.
  10. Orthocarbonic acid, tetraethyl ester Archived 2012-09-20 at the Wayback Machine Organic Syntheses, Coll. Vol. 4, p. 457 (1963); Vol. 32, p. 68 (1952).
  11. Sonmez, H.B.; Wudl, F. (2005). "Cross-linked poly(orthocarbonate)s as organic solvent sorbents". Macromolecules. 38 (5): 1623–1626. Bibcode:2005MaMol..38.1623S. doi:10.1021/ma048731x.
  12. Stansbury, J.W. (1992). "Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization". Journal of Dental Research. 71 (7): 1408–1412. doi:10.1177/00220345920710070901. PMID   1629456. S2CID   24589493. Archived from the original on 2008-07-08. Retrieved 2008-06-19.