Radium hydroxide

Last updated
Radium hydroxide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/2H2O.Ra/h2*1H2;/q;;+2/p-2
    Key: ARVNHJBMBBFPCP-UHFFFAOYSA-L
  • [Ra+2].[O-H].[O-H]
Properties
H2O2Ra
Molar mass 260 g·mol−1
Appearancecolorless crystals
soluble
Related compounds
Related compounds
Barium hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Radium hydroxide is an inorganic compound of radium, hydrogen, and oxygen with the chemical formula Ra(OH)2. [1] Stability constant of aqueous RaOH+ ion pair at zero ionic strength is equal to 5. [2]

Contents

Synthesis

Ra + 2H2O → Ra(HO)2 + H2
RaO + H2O → Ra(HO)2

Physical properties

Radium hydroxide forms colorless crystals that dissolve in water better than does barium hydroxide, and has more basic properties.

The compound forms a hydrate of the composition Ra(OH)2·8H2O. [4]

Radium hydroxide is a caustic, toxic, and corrosive substance. It is significantly more toxic than barium hydroxide (Ba(OH)2) and strontium hydroxide (Sr(OH)2).

Related Research Articles

<span class="mw-page-title-main">Barium</span> Chemical element, symbol Ba and atomic number 56

Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Radium</span> Chemical element, symbol Ra and atomic number 88

Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits ionizing radiation as a by-product, which can excite fluorescent chemicals and cause radioluminescence.

<span class="mw-page-title-main">Alkaline earth metal</span> Group of chemical elements

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.

<span class="mw-page-title-main">Aqueous solution</span> Solution in which the solvent is water

An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water would be represented as Na+(aq) + Cl(aq). The word aqueous means pertaining to, related to, similar to, or dissolved in, water. As water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Since water is frequently used as the solvent in experiments, the word solution refers to an aqueous solution, unless the solvent is specified.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a supersaturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

<span class="mw-page-title-main">Calcium hydroxide</span> Inorganic compound of formula Ca(OH)2

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.

<span class="mw-page-title-main">Barium hydroxide</span> Chemical compound

Barium hydroxide is a chemical compound with the chemical formula Ba(OH)2. The monohydrate (x = 1), known as baryta or baryta-water, is one of the principal compounds of barium. This white granular monohydrate is the usual commercial form.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

In chemistry, a strong electrolyte is a solute that completely, or almost completely, ionizes or dissociates in a solution. These ions are good conductors of electric current in the solution.

Water-reactive substances are those that spontaneously undergo a chemical reaction with water, as they are highly reducing in nature. Notable examples include alkali metals, lithium through caesium, and alkaline earth metals, magnesium through barium.

Basic oxides are oxides that show basic properties, in opposition to acidic oxides. A basic oxide can either react with water to form a base, or with an acid to form a salt and water in a neutralization reaction.

Zinc hydroxide Zn(OH)2 is an inorganic chemical compound. It also occurs naturally as 3 rare minerals: wülfingite (orthorhombic), ashoverite and sweetite (both tetragonal).

<span class="mw-page-title-main">Nickel(II) hydroxide</span> Chemical compound

Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is a lime-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable batteries.

<span class="mw-page-title-main">Radium sulfate</span> Chemical compound

Radium sulfate (or radium sulphate) is an inorganic compound with the formula RaSO4 and an average molecular mass of 322.088 g/mol. This white salt is the least soluble of all known sulfate salts. It was formerly used in radiotherapy and smoke detectors, but this has been phased out in favor of less hazardous alternatives.

Radium carbonate is a compound of radium, carbon, and oxygen. This salt is a highly radioactive, amorphous, white powder that has potential applications in medicine. It is notable for forming disordered crystals at room temperature and for being approximately 10 times more soluble than the corresponding barium carbonate - witherite. Radium carbonate is one of a few radium compounds which has significantly different properties from corresponding barium compounds. Moreover, radium is the only alkaline-earth metal which forms disordered crystals in its carbonate phase. Even though radium carbonate has very low solubility in water, it is soluble in dilute mineral acids and concentrated ammonium carbonate.

Radium compounds are compounds containing the element radium (Ra). Due to radium's radioactivity, not many compounds have been well characterized. Solid radium compounds are white as radium ions provide no specific coloring, but they gradually turn yellow and then dark over time due to self-radiolysis from radium's alpha decay. Insoluble radium compounds coprecipitate with all barium, most strontium, and most lead compounds.

Radium iodate is an inorganic compound, a salt of radium and iodic acid with the chemical formula Ra(IO3)2.

References

  1. Brown, Paul L.; Matyskin, Artem V.; Ekberg, Christian (1 June 2022). "The aqueous chemistry of radium". Radiochimica Acta. 110 (6–9): 505–513. doi: 10.1515/ract-2021-1141 . ISSN   2193-3405. S2CID   248301187 . Retrieved 8 June 2023.
  2. Matyskin, Artem V.; Brown, Paul L.; Ekberg, Christian (2019). "Weak barium and radium hydrolysis using an ion exchange method and its uncertainty assessment". Journal of Chemical Thermodynamics. 128: 362–371. doi:10.1016/j.jct.2018.08.037. S2CID   105458974.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. "Alkaline Earth Hydroxide - an overview | ScienceDirect Topics". ScienceDirect . Retrieved 8 June 2023.
  4. Schweitzer, George K.; Pesterfield, Lester L. (14 January 2010). The Aqueous Chemistry of the Elements. Oxford University Press. p. 448. ISBN   978-0-19-974219-6 . Retrieved 8 June 2023.