Iron(II) hydroxide

Last updated
Iron(II) hydroxide
Iron(II)-hydroxide-3D-vdW.png
Names
IUPAC name
Iron(II) hydroxide
Other names
Ferrous hydroxide, green rust
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.038.581 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/Fe.2H2O/h;2*1H2/q+2;;/p-2 Yes check.svgY
    Key: NCNCGGDMXMBVIA-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/Fe.2H2O/h;2*1H2/q+2;;/p-2
    Key: NCNCGGDMXMBVIA-NUQVWONBAV
  • O[Fe]O
Properties
Fe(OH)2
Molar mass 89.86 g/mol
Appearancegreen solid
Density 3.4 g/cm3 [1]
0.000052 g/100 g water (20 °C, pH 7) [2]
8.0 x 10−16 [3]
Hazards
Flash point Non-flammable
Related compounds
Related compounds
Iron(II) oxide
Iron(III) hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Iron(II) hydroxide or ferrous hydroxide is an inorganic compound with the formula Fe(OH)2. It is produced when iron(II) salts, from a compound such as iron(II) sulfate, are treated with hydroxide ions. Iron(II) hydroxide is a white solid, but even traces of oxygen impart a greenish tinge. The air-oxidised solid is sometimes known as "green rust".

Contents

Preparation and reactions

Iron(II) hydroxide is poorly soluble in water (1.43 × 103 g/L), or 1.59 × 10−5 mol/L. It precipitates from the reaction of iron(II) and hydroxide salts: [4]

FeSO4 + 2NaOH → Fe(OH)2 + Na2SO4

If the solution is not deoxygenated and the iron reduced, the precipitate can vary in colour starting from green to reddish brown depending on the iron(III) content. Iron(II) ions are easily substituted by iron(III) ions produced by its progressive oxidation.

It is also easily formed as a by-product of other reactions, a.o., in the synthesis of siderite, an iron carbonate (FeCO3), if the crystal growth conditions are imperfectly controlled.

Structure

Fe(OH)2 is a layer double hydroxide (LDH).

Green rust is a recently discovered mineralogical form. All forms of green rust (including fougerite) are more complex and variable than the ideal iron(II) hydroxide compound.

Reactions

Under anaerobic conditions, the iron(II) hydroxide can be oxidised by the protons of water to form magnetite (iron(II,III) oxide) and molecular hydrogen. This process is described by the Schikorr reaction:

3 Fe(OH)2 → Fe3O4 + H2 + 2 H2O

Anions such as selenite and selenate can be easily adsorbed on the positively charged surface of iron(II) hydroxide, where they are subsequently reduced by Fe2+. The resulting products are poorly soluble (Se0, FeSe, or FeSe2).

Natural occurrence

Iron III hydroxide staining caused by oxidation of dissolved iron II and precipitation, Perth, Western Australia. Limestone building with pollution.jpg
Iron III hydroxide staining caused by oxidation of dissolved iron II and precipitation, Perth, Western Australia.

Iron dissolved in groundwater is in the reduced iron II form. If this groundwater comes in contact with oxygen at the surface, e.g. in natural springs, iron II is oxidised to iron III and forms insoluble hydroxides in water. [5] The natural analogue of iron(II) hydroxide compound is the very rare mineral amakinite, (Fe,Mg)(OH)2. [6] [7]

Application

Iron(II) hydroxide has also been investigated as an agent for the removal of toxic selenate and selenite ions from water systems such as wetlands. The iron(II) hydroxide reduces these ions to elemental selenium, which is insoluble in water and precipitates out. [8]

In a basic solution iron(II) hydroxide is the electrochemically active material of the negative electrode of the nickel-iron battery.

See also

Related Research Articles

Oxide Chemical compound with at least one oxygen atom attached to the central atom

An oxide is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. Metal oxides thus typically contain an anion of oxygen in the oxidation state of −2. Most of the Earth's crust consists of solid oxides, the result of elements being oxidized by the oxygen in air or in water. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 (called a passivation layer) that protects the foil from further corrosion. Certain elements can form multiple oxides, differing in the amounts of the element combining with the oxygen. Examples are carbon, iron, nitrogen (see nitrogen oxide), silicon, titanium, lithium, and aluminium. In such cases the oxides are distinguished by specifying the numbers of atoms involved, as in carbon monoxide and carbon dioxide, or by specifying the element's oxidation number, as in iron(II) oxide and iron(III) oxide.

Rust Type of iron oxide

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.

In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions.

Iron(III) The element iron in its +3 oxidation state

In chemistry, iron(III) refers to the element iron in its +3 oxidation state. In ionic compounds (salts), such an atom may occur as a separate cation (positive ion) denoted by Fe3+.

Iron(II) sulfate Chemical compound

Iron(II) sulfate (British English: iron(II) sulphate) or ferrous sulfate denotes a range of salts with the formula FeSO4·xH2O. These compounds exist most commonly as the heptahydrate (x = 7) but several values for x are known. The hydrated form is used medically to treat iron deficiency, and also for industrial applications. Known since ancient times as copperas and as green vitriol (vitriol is an archaic name for sulfate), the blue-green heptahydrate (hydrate with 7 molecules of water) is the most common form of this material. All the iron(II) sulfates dissolve in water to give the same aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry and is paramagnetic. The name copperas dates from times when the copper(II) sulfate was known as blue copperas, and perhaps in analogy, iron(II) and zinc sulfate were known respectively as green and white copperas.

Potassium ferricyanide Chemical compound

Potassium ferricyanide is the chemical compound with the formula K3[Fe(CN)6]. This bright red salt contains the octahedrally coordinated [Fe(CN)6]3− ion. It is soluble in water and its solution shows some green-yellow fluorescence. It was discovered in 1822 by Leopold Gmelin.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

Iron(II,III) oxide Chemical compound

Iron(II,III) oxide is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite. It is one of a number of iron oxides, the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe2O3) which also occurs naturally as the mineral hematite. It contains both Fe2+ and Fe3+ ions and is sometimes formulated as FeO ∙ Fe2O3. This iron oxide is encountered in the laboratory as a black powder. It exhibits permanent magnetism and is ferrimagnetic, but is sometimes incorrectly described as ferromagnetic. Its most extensive use is as a black pigment. For this purpose, it is synthesized rather than being extracted from the naturally occurring mineral as the particle size and shape can be varied by the method of production.

Iron(II) sulfide Chemical compound

Iron(II) sulfide or ferrous sulfide is one of a family chemical compounds and minerals with the approximate formula FeS. Iron sulfides are often iron-deficient non-stoichiometric. All are black, water-insoluble solids.

Sodium selenite Chemical compound

Sodium selenite is the inorganic compound with the formula Na2SeO3. This salt is a colourless solid. The pentahydrate Na2SeO3(H2O)5 is the most common water-soluble selenium compound.

Ferrate(VI) Ion

Ferrate(VI) is the inorganic anion with the chemical formula [FeO4]2−. It is photosensitive, contributes a pale violet colour to compounds and solutions containing it and is one of the strongest water-stable oxidizing species known. Although it is classified as a weak base, concentrated solutions containing ferrate(VI) are corrosive and attack the skin and are only stable at high pH.

Iron(III) oxide-hydroxide Chemical compound

Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).

Gleysol Saturated soil type

A gley is a wetland soil that, unless drained, is saturated with groundwater for long enough to develop a characteristic gleyic colour pattern. The pattern is essentially made up of reddish, brownish, or yellowish colours at surfaces of soil particles and/or in the upper soil horizons mixed with greyish/blueish colours inside the peds and/or deeper in the soil. Gleysols are also known as Gleyzems, meadow soils, Aqu-suborders of Entisols, Inceptisols and Mollisols, or as groundwater soils and hydro-morphic soils.

A Nitrate Test is a chemical test used to determine the presence of nitrate ion in solution. Testing for the presence of nitrate via wet chemistry is generally difficult compared with testing for other anions, as almost all nitrates are soluble in water. In contrast, many common ions give insoluble salts, e.g. halides precipitate with silver, and sulfate precipitate with barium.

Iron(III) acetate Chemical compound

Ferric acetate is the acetate salt of the coordination complex [Fe3O(OAc)6(H2O)3]+ (OAc is CH3CO2). Commonly the salt is known as "basic iron acetate". The formation of the red-brown complex was once used as a test for ferric ions.

Barium ferrate Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

Cobalt(II) hydroxide Chemical compound

Cobalt(II) hydroxide or cobaltous hydroxide is the inorganic compound with the formula Co(OH)
2
, consisting of divalent cobalt cations Co2+
and hydroxide anions HO
. The pure compound, often called the "beta form" is a pink solid insoluble in water.

Iron(II) The element iron in its +2 oxidation state

In chemistry, iron(II) refers to the element iron in its +2 oxidation state. In ionic compounds (salts), such an atom may occur as a separate cation (positive ion) denoted by Fe2+.

Green rust Generic name for various green-colored iron compounds

Green rust is a generic name for various green crystalline chemical compounds containing iron(II) and iron(III) cations, the hydroxide (HO
) anion, and another anion such as carbonate (CO2−
3
), chloride (Cl
), or sulfate (SO2−
4
), in a layered double hydroxide structure. The most studied varieties are

Iron(II) selenate (ferrous selenate) is an inorganic compound with the formula FeSeO4. It has anhydrous and several hydrate forms. The pentahydrate has the structure, [Fe(H2O)4]SeO4•H2O, isomorphous to the corresponding iron(II) sulfate. Heptahydrate is also known, in form of unstable green crystalline solid.

References

  1. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN   0-8493-0487-3.
  2. CRC Handbook of Chemistry and Physics, 84th Edition, CRC Press, 2004, pg 4-62
  3. http://www.gfredlee.com/SurfaceWQ/StummOxygenFerrous.pdf [ bare URL PDF ]
  4. H. Lux "Iron(II) Hydroxide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1498.
  5. lenntech.com
  6. "Amakinite".
  7. "List of Minerals". 21 March 2011.
  8. Zingaro, Ralph A.; et al. (1997). "Reduction of oxoselenium anions by iron(II) hydroxide". Environment International. 23 (3): 299–304. doi:10.1016/S0160-4120(97)00032-9.