Iron germanide

Last updated
Iron germanide
MnSi lattice2.png
Structures of left-handed and right-handed FeGe crystals (3 presentations, with different numbers of atoms per unit cell; orange atoms are Ge)
Names
IUPAC name
Iron germanide
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/Fe.Ge
    Key: GDXUDZHLHOBFJH-UHFFFAOYSA-N
  • [Fe].[Ge]
Properties
FeGe
Molar mass 128.47 g/mol
Structure
Cubic [1]
P213 (No. 198), cP8
a = 0.4689 nm
4
Hazards
Flash point Non-flammable
Related compounds
Other anions
Iron silicide
Other cations
Manganese germanide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN (what is  Yes check.svgYX mark.svgN ?)

Iron germanide (FeGe) is an intermetallic compound, a germanide of iron. At ambient conditions it crystallizes in three polymorphs with monoclinic, hexagonal and cubic structures. The cubic polymorph has no inversion center, it is therefore helical, with right-hand and left-handed chiralities. [1]

Contents

Magnetism

Experimental phase diagrams when the applied magnetic field H is directed perpendicular or parallel to a FeGe thin film. With increasing magnetic field, the magnetic ordering of FeGe spins changes from helical (H) to skyrmion (SkL), conical (C) and field polarized (FP, i.e. regular ferromagnetic). FeGe magnetic phase diagram.png
Experimental phase diagrams when the applied magnetic field H is directed perpendicular or parallel to a FeGe thin film. With increasing magnetic field, the magnetic ordering of FeGe spins changes from helical (H) to skyrmion (SkL), conical (C) and field polarized (FP, i.e. regular ferromagnetic).
Simulated and measured (by STXM) images of helical, skyrmion and conical phases. Scale bar: 200 nm FeGe magnetic phase diagram2a.png
Simulated and measured (by STXM) images of helical, skyrmion and conical phases. Scale bar: 200 nm

FeGe is extensively studied for its unusual magnetic properties. Electron spins in this material show dissimilar, yet regular spatial arrangements at different values of applied magnetic field. Those arrangements are named helical, skyrmion lattice, and conical. They can be controlled not only by temperature and magnetic field, but also by electric current, and the current density required for manipulating skyrmions (~106 A/m2) is approximately one million times smaller than that needed for moving magnetic domains in traditional ferromagnets. As a result, skyrmions have potential application in ultrahigh-density magnetic storage devices. [2]

The helical, conical and skyrmion structures are not unique to FeGe; they are also found in MnSi, MnGe and similar compounds, but contrary to those materials, the observation of magnetic ordering patterns in FeGe does not require cryogenic cooling. [2] The disadvantage of FeGe over MnSi is its polymorphism, which hinders the growth of large homogeneous crystals. [1]

Synthesis

Polycrystalline FeGe

Polycrystalline FeGe is produced by vacuum arc remelting, spark plasma sintering, or high-pressure high-temperature treatment of a mixture of elemental iron and germanium. Single crystals of FeGe ca. 1 mm in size can be grown from the powder using a chemical transport reaction and iodine as transporting agent. The source temperature is maintained at 450 °C and the temperature gradient at ca. 50 °C across the reaction tube, over 1–2 weeks. [3] [4]

FeGe thin film

FeGe films can be epitaxially grown on Si (111) using MBE. The thin film FeGe is polycrystalline with ± 30° in-plane rotations around [111] out-of-plane axis. [5] Theoretical simulations indicate that FeGe thin film can hold skyrmion cylinder or chiral bobber phases, which were recently imaged in a 35 nm plan-view FeGe thin film using Lorentz STEM/TEM. [5]

Structure

Iron germanide is a non-stoichiometric compound where the Ge:Fe ratio often deviates from 1. The Fe2Ge3 compound is a Nowotny phase exhibiting a chimney ladder structure. It is a semiconductor with a band gap or 0.03 eV. [6]

Related Research Articles

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. LC materials may not always be in a LC state of matter.

Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization. The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ. The effect was first identified in 1842 by James Joule when observing a sample of iron.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Intermetallic</span> Type of metallic alloy

An intermetallic is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.

<span class="mw-page-title-main">Heusler compound</span>

Heusler compounds are magnetic intermetallics with face-centered cubic crystal structure and a composition of XYZ (half-Heuslers) or X2YZ (full-Heuslers), where X and Y are transition metals and Z is in the p-block. The term derives from the name of German mining engineer and chemist Friedrich Heusler, who studied such a compound (Cu2MnAl) in 1903. Many of these compounds exhibit properties relevant to spintronics, such as magnetoresistance, variations of the Hall effect, ferro-, antiferro-, and ferrimagnetism, half- and semimetallicity, semiconductivity with spin filter ability, superconductivity, topological band structure and are actively studied as Thermoelectric materials. Their magnetism results from a double-exchange mechanism between neighboring magnetic ions. Manganese, which sits at the body centers of the cubic structure, was the magnetic ion in the first Heusler compound discovered. (See the Bethe–Slater curve for details of why this happens.)

<span class="mw-page-title-main">A15 phases</span>

The A15 phases (also known as β-W or Cr3Si structure types) are series of intermetallic compounds with the chemical formula A3B (where A is a transition metal and B can be any element) and a specific structure. The A15 phase is also one of the members in the Frank–Kasper phases family. Many of these compounds have superconductivity at around 20 K (−253 °C; −424 °F), which is comparatively high, and remain superconductive in magnetic fields of tens of teslas (hundreds of kilogauss). This kind of superconductivity (Type-II superconductivity) is an important area of study as it has several practical applications.

<span class="mw-page-title-main">Helimagnetism</span>

Helimagnetism is a form of magnetic ordering where spins of neighbouring magnetic moments arrange themselves in a spiral or helical pattern, with a characteristic turn angle of somewhere between 0 and 180 degrees. It results from the competition between ferromagnetic and antiferromagnetic exchange interactions. It is possible to view ferromagnetism and antiferromagnetism as helimagnetic structures with characteristic turn angles of 0 and 180 degrees respectively. Helimagnetic order breaks spatial inversion symmetry, as it can be either left-handed or right-handed in nature.

<span class="mw-page-title-main">MAX phases</span>

The MAX phases are layered, hexagonal carbides and nitrides which have the general formula: Mn+1AXn, (MAX) where n = 1 to 4, and M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) element and X is either carbon and/or nitrogen. The layered structure consists of edge-sharing, distorted XM6 octahedra interleaved by single planar layers of the A-group element.

<span class="mw-page-title-main">Nowotny phase</span>

In inorganic chemistry, a Nowotny chimney ladder phase is a particular intermetallic crystal structure found with certain binary compounds. NLC phases are generally tetragonal and are composed of two separate sublattices. The first is a tetragonal array of transition metal atoms, generally from group 4 through group 9 of the periodic table. Contained within this array of transition metal atoms is a second network of main group atoms, typically from group 13 or group 14. The transition metal atoms form a chimney with helical zigzag chain. The main-group elements form a ladder spiraling inside the transition metal helix.

<span class="mw-page-title-main">Binary compounds of silicon</span> Any binary chemical compound containing just silicon and another chemical element

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element. Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Cr<sub>23</sub>C<sub>6</sub> crystal structure

Cr23C6 is the prototypical compound of a common crystal structure, discovered in 1933 as part of the chromium-carbon binary phase diagram. Over 85 known compounds adopt this structure type, which can be described as a NaCl-like packing of chromium cubes and cuboctahedra.

<span class="mw-page-title-main">High-entropy alloy</span> Alloys with high proportions of several metals

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron-based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and others in various steels. Hence, high-entropy alloys are a novel class of materials. The term "high-entropy alloys" was coined by Taiwanese scientist Jien-Wei Yeh because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. Some alternative names, such as multi-component alloys, compositionally complex alloys and multi-principal-element alloys are also suggested by other researchers.

<span class="mw-page-title-main">Iron monosilicide</span> Chemical compound

Iron monosilicide (FeSi) is an intermetallic compound, a silicide of iron that occurs in nature as the rare mineral naquite. It is a narrow-bandgap semiconductor with a room-temperature electrical resistivity of ca. 10,000 Ohm·cm and unusual magnetic properties at low temperatures. FeSi has a cubic crystal lattice with no inversion center; therefore its magnetic structure is helical, with right-hand and left-handed chiralities.

<span class="mw-page-title-main">Manganese germanide</span> Chemical compound

Manganese germanide (MnGe) is an intermetallic compound, a germanide of manganese. Its crystals have a cubic symmetry with no inversion center, they are therefore helical, with right-hand and left-handed chiralities.

<span class="mw-page-title-main">Cobalt germanide</span> Chemical compound

Cobalt germanide (CoGe) is an intermetallic compound, a germanide of cobalt.

<span class="mw-page-title-main">Manganese disilicide</span> Chemical compound

Manganese disilicide (MnSi2) is an intermetallic compound, a silicide of manganese. It is a non-stoichiometric compound, with a silicon deficiency expressed as MnSi2–x. Crystal structures of many MnSi2–x compounds resemble a chimney ladder and are called Nowotny phases. They include MnSi2 (x=0), Mn4Si7 (x=0.250), Mn11Si19 (x=0.273), Mn15Si26 (x=0.267) and Mn27Si47 (x=0.259). These phases have very similar unit cells whose length varies from 1.75 nm for MnSi2 or Mn4Si7, which have almost the same structures, to 11.8 nm for Mn27Si47.

<span class="mw-page-title-main">Manganese monosilicide</span> Chemical compound

Manganese monosilicide (MnSi) is an intermetallic compound, a silicide of manganese. It occurs in cosmic dust as the mineral brownleeite. MnSi has a cubic crystal lattice with no inversion center; therefore its crystal structure is helical, with right-hand and left-hand chiralities.

Copper oxide selenite is an inorganic compound with the chemical formula Cu2OSeO3. It is an electrically insulating, piezoelectric and piezomagnetic material, which becomes a ferrimagnet upon cooling below 58 K. As of 2021, Cu2OSeO3 is the only insulating material that hosts magnetic skyrmions.

Mavlyanovite is a manganese-silicon mineral with formula Mn5Si3. It was named after Gani Mavlyanov, an Uzbek geologist who lived from 1910 to 1988.

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

References

  1. 1 2 3 Lebech, B; Bernhard, J; Freltoft, T (1989). "Magnetic structures of cubic FeGe studied by small-angle neutron scattering". Journal of Physics: Condensed Matter. 1 (35): 6105–6122. Bibcode:1989JPCM....1.6105L. doi:10.1088/0953-8984/1/35/010. S2CID   250793284.
  2. 1 2 Nagaosa, Naoto; Tokura, Yoshinori (2013). "Topological properties and dynamics of magnetic skyrmions". Nature Nanotechnology. 8 (12): 899–911. Bibcode:2013NatNa...8..899N. doi:10.1038/nnano.2013.243. PMID   24302027.
  3. Hiroto, Takanobu; So, Yeong-Gi; Kimura, Kaoru (2018). "Synthesis and Thermal Stability of B20-Type TMGe (TM = Mn, Fe and Co) Intermetallic Compounds Prepared by Mechanical Milling". Materials Transactions. 59 (6): 1005–1008. doi: 10.2320/matertrans.M2018016 .
  4. Birch, M. T.; Cortés-Ortuño, D.; Turnbull, L. A.; Wilson, M. N.; Groß, F.; Träger, N.; Laurenson, A.; Bukin, N.; Moody, S. H.; Weigand, M.; Schütz, G.; Popescu, H.; Fan, R.; Steadman, P.; Verezhak, J. A. T.; Balakrishnan, G.; Loudon, J. C.; Twitchett-Harrison, A. C.; Hovorka, O.; Fangohr, H.; Ogrin, F. Y.; Gräfe, J.; Hatton, P. D. (2020). "Real-space imaging of confined magnetic skyrmion tubes". Nature Communications. 11 (1): 1726. arXiv: 1909.04528 . Bibcode:2020NatCo..11.1726B. doi: 10.1038/s41467-020-15474-8 . PMC   7138844 . PMID   32265449.
  5. 1 2 Wang, Binbin; Bagués, Núria; Liu, Tao; Kawakami, Roland K.; McComb, David W. (2022-01-01). "Extracting weak magnetic contrast from complex background contrast in plan-view FeGe thin films". Ultramicroscopy. 232: 113395. doi: 10.1016/j.ultramic.2021.113395 . ISSN   0304-3991. PMID   34653891. S2CID   239003196.
  6. Verchenko, Valeriy Yu.; Wei, Zheng; Tsirlin, Alexander A.; Callaert, Carolien; Jesche, Anton; Hadermann, Joke; Dikarev, Evgeny V.; Shevelkov, Andrei V. (2017). "Crystal Growth of the Nowotny Chimney Ladder Phase Fe2Ge3: Exploring New Fe-Based Narrow-Gap Semiconductor with Promising Thermoelectric Performance". Chemistry of Materials. 29 (23): 9954–9963. doi:10.1021/acs.chemmater.7b03300. hdl: 10067/1485310151162165141 . ISSN   0897-4756.