Judith Lean | |
---|---|
Alma mater | Australian National University (BS) University of Adelaide (PhD) |
Awards | NASA Group Achievement Award |
Scientific career | |
Fields | Physics, climatology |
Institutions | United States Naval Research Laboratory |
Judith L. Lean is an Australian-American solar and climate scientist. She is a senior scientist at the United States Naval Research Laboratory. Lean is a three time recipient of the NASA Group Achievement Award and an elected member and fellow of several academic societies.
Lean completed a bachelor's degree in physics, with honors, at the Australian National University in 1974 and her doctorate in atmospheric physics at the University of Adelaide in 1980. [1] Her dissertation was titled Atmospheric ultraviolet absorption spectroscopy. [2]
Lean worked at the Cooperative Institute for Research in Environmental Sciences and the Applied Research Research Corporation in Maryland. In 1988, she joined the United States Naval Research Laboratory (NRL) as a research physicist in the Space Science Division. She is a senior scientist for Sun-Earth System Research at the NRL. [1]
Lean's research focuses on the mechanisms, measurements, modeling, and forecasting of variations in the Sun's radiative output at all wavelengths, and responses to this variability of the Earth's global climate, middle atmosphere, and space climate and weather. This research advances understanding of variations in the extended operational environment that can affect Naval assets and activities. She has been an Investigator for NASA and NOAA research grants, including the Upper Atmosphere Research Satellite, Living with a Star, Sun-Earth Connection and Glory Science Team, and NOAA's Climate Data Stewardship programs. Lean is a co-investigator on three NASA satellite missions, the Solar Radiation and Climate Experiment, Thermosphere Ionosphere Mesosphere Energetics and Dynamics, and the Solar Dynamics Observatory. She currently leads NRL's Integrating the Sun-Earth System (ISES) Accelerated Research Initiative. [1]
Lean has authored or co-authored 117 refereed journal papers and 34 conference proceedings in the scientific literature. She has delivered over 290 presentations at scientific meetings, seminars, colloquia, and lectures. Lean was also a lead author of the Intergovernmental Panel on Climate Change (IPPC) Report, which was recognized with the 2007 Nobel Peace Prize; she has served on many NRC and NASA committees, including the recent NRC Decadal Surveys of Earth Science and Applications and Solar and Space Physics. [1]
In 2014, the following two of her papers selected for publication in Geophysical Research Letters Top 40 edition. [3]
The 1995 paper was published, Lean explains, at a time when there was a lot of speculation about how much solar variability may have influenced climate change in recent centuries. The research by Lean, Beer, and Bradley provided a new way to numerically estimate past changes in total and ultraviolet solar irradiance based on contemporary records observed from satellites, combined with estimates of long-term solar variability reported (at the time) in Sun-like-stars. With this new reconstruction of historical solar irradiance since 1610, scientists could quantitatively estimate the Sun's contribution to global surface temperature changes. Lean and her colleagues found that the Sun may have contributed half of the changes since 1610 and less than a third of the changes since 1970, contrary to earlier research suggesting that the Sun may be entirely responsible. This meant that solar variability was not the primary cause of global warming in the past decades. Since the 1995 paper, many climate change studies have used the irradiance reconstruction for a variety of analyses and as input to climate model simulations. Although subsequent work with NRL co-authors Yi-Ming Wang and Neil Sheeley has since revised the magnitude of the total irradiance change during the past four centuries, the overall approach and methodology were first established in this 1995 GRL paper, which has been cited more than 600 times. [3]
The 2011 paper, written with primary author Greg Kopp, Laboratory for Atmospheric and Space Physics (LASP), was published eight years after the 2003 launch on the Solar Radiation and Climate (SORCE) spacecraft; SORCE carried a new LASP-designed instrument that measured total solar irradiance with superior accuracy and precision. The new observations showed that the absolute value of total solar irradiance (during solar minimum conditions) was 1360.8 instead of 1365.4 W per m-2. Scientists had assumed the higher value was correct for over a decade. That higher value was typically used in climate model simulations and other applications needing to know the amount of energy the Sun provides to the Earth. Initially, most scientists thought that the new lower value was an error, but after exhaustive laboratory testing and re-calibrations, researchers determined that the lower value, not the higher value, was closer to the true value of total solar irradiance. This new lower value has since been confirmed by additional space-based radiometer measurements. As well, the new measurements from the SORCE spacecraft, which are not only more accurate but also more precise than prior observations, enabled the generation of a new model of solar irradiance variability, and an assessment of the contributions of solar variability to global change in the recent three decades, finding that although a solar cycle signal of 0.1 °C is detachable in the global climate record, solar variability is not a primary cause of recent global warming of about 0.4 °C from 1980 to 2010. The paper has already been cited more than 90 times. [3]
Lean was elected a Fellow of the American Geophysical Union in 2002 and a member of the National Academy of Sciences in 2003. She has been honored with NASA Group Achievement Awards for SDO/EVE Science Team (2012) TIMED/SEE Science Team (2011) and UARS Instrument Development Group (1992), and a Presidential Meritorious Rank Award (2010). Lean is a member of the International Association of Geomagnetism and Aeronomy, American Astronomical Society-Solar Physics Division, American Meteorological Society, and the American Physical Society. In 2013, Lean was elected a member of the American Philosophical Society. [1]
Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere as daylight when the Sun is above the horizon. When direct solar radiation is not blocked by clouds, it is experienced as sunshine, a combination of bright light and radiant heat (atmospheric). When blocked by clouds or reflected off other objects, sunlight is diffused. Sources estimate a global average of between 164 watts to 340 watts per square meter over a 24-hour day; this figure is estimated by NASA to be about a quarter of Earth's average total solar irradiance.
The Laboratory for Atmospheric and Space Physics (LASP) is a research organization at the University of Colorado Boulder. LASP is a research institute with over one hundred research scientists ranging in fields from solar influences, to Earth's and other planetary atmospherics processes, space weather, space plasma and dusty plasma physics. LASP has advanced technical capabilities specializing in designing, building, and operating spacecraft and spacecraft instruments.
The solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surface. Over the period of a solar cycle, levels of solar radiation and ejection of solar material, the number and size of sunspots, solar flares, and coronal loops all exhibit a synchronized fluctuation from a period of minimum activity to a period of a maximum activity back to a period of minimum activity.
The solar luminosity (L☉) is a unit of radiant flux conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun.
The solar constant (GSC) measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun.
In atmospheric physics and climatology, radiative forcing is a concept used to quantify a change to the balance of energy flowing through a planetary atmosphere. Various factors contribute to this change in energy balance, such as concentrations of greenhouse gases and aerosols, and changes in surface albedo and solar irradiance. In more technical terms, it is defined as "the change in the net, downward minus upward, radiative flux due to a change in an external driver of climate change." These external drivers are distinguished from feedbacks and variability that are internal to the climate system, and that further influence the direction and magnitude of imbalance. Radiative forcing on Earth is meaningfully evaluated at the tropopause and at the top of the stratosphere. It is quantified in units of watts per square meter, and often summarized as an average over the total surface area of the globe.
STS-66 was a Space Shuttle program mission that was flown by the Space Shuttle Atlantis. STS-66 launched on November 3, 1994, at 11:59:43.060 am EDT from Launch Pad 39-B at NASA's Kennedy Space Center. Atlantis landed at Edwards Air Force Base on November 14, 1994, at 10:33:45 am EST.
The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.
Solar irradiance is the power per unit area received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m2) in SI units.
This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.
The Solar Radiation and Climate Experiment (SORCE) was a 2003–2020 NASA-sponsored satellite mission that measured incoming X-ray, ultraviolet, visible, near-infrared, and total solar radiation. These measurements specifically addressed long-term climate change, natural variability, atmospheric ozone, and UV-B radiation, enhancing climate prediction. These measurements are critical to studies of the Sun, its effect on the Earth's system, and its influence on humankind. SORCE was launched on 25 January 2003 on a Pegasus XL launch vehicle to provide NASA's Earth Science Enterprise (ESE) with precise measurements of solar radiation.
The Solar Dynamics Observatory (SDO) is a NASA mission which has been observing the Sun since 2010. Launched on 11 February 2010, the observatory is part of the Living With a Star (LWS) program.
The Aeronomy of Ice in the Mesosphere was a NASA satellite launched in 2007 to conduct a planned 26-month study of noctilucent clouds (NLCs). It is the ninetieth Explorer program mission and is part of the NASA-funded Small Explorer program (SMEX).
The Solar Backscatter Ultraviolet Radiometer, or SBUV/2, is a series of operational remote sensors on NOAA weather satellites in Sun-synchronous orbits which have been providing global measurements of stratospheric total ozone, as well as ozone profiles, since March 1985. The SBUV/2 instruments were developed from the SBUV experiment flown on the Nimbus-7 spacecraft which improved on the design of the original BUV instrument on Nimbus-4. These are nadir viewing radiometric instruments operating at mid to near UV wavelengths. SBUV/2 data sets overlap with data from SBUV and TOMS instruments on the Nimbus-7 spacecraft. These extensive data sets measure the density and vertical distribution of ozone in the Earth's atmosphere from six to 30 miles.
Nicola Scafetta is a research scientist and at the University of Napoli Federico II. He was formerly at the ACRIM Lab group and an adjunct assistant professor in the physics department at Duke University. His research interests are in theoretical and applied statistics and nonlinear models of complex processes. He is notable for having controversial views on climate change.
Patterns of solar irradiance and solar variation have been a main driver of climate change over the millions to billions of years of the geologic time scale.
Student Nitric Oxide Explorer, was a NASA small scientific satellite which studied the concentration of nitric oxide in the thermosphere. It was launched in 1998 as part of NASA's Explorer program. The satellite was the first of three missions developed within the Student Explorer Demonstration Initiative (STEDI) program funded by the NASA and managed by the Universities Space Research Association (USRA). STEDI was a pilot program to demonstrate that high-quality space science can be carried out with small, low-cost free-flying satellites on a time scale of two years from go-ahead to launch. The satellite was developed by the University of Colorado Boulder's Laboratory for Atmospheric and Space Physics (LASP) and had met its goals by the time its mission ended with reentry in December 2003.
Robert F. Cahalan is Emeritus Scientist at NASA Goddard Space Flight Center, and previous Chief of the Laboratory for Climate and Radiation (2003–2013), Project Scientist of the Solar Radiation and Climate Experiment (SORCE), and President of the International Radiation Commission (IRC) of the International Association of Meteorology and Atmospheric Sciences of the International Union of Geodesy and Geophysics during 2008–2012. His interests include climate change, energy balance, remote sensing, and solar radiation.
Space climate is the long-term variation in solar activity within the heliosphere, including the solar wind, the Interplanetary magnetic field (IMF), and their effects in the near-Earth environment, including the magnetosphere of Earth and the ionosphere, the upper and lower atmosphere, climate, and other related systems. The scientific study of space climate is an interdisciplinary field of space physics, solar physics, heliophysics, and geophysics. It is thus conceptually related to terrestrial climatology, and its effects on the atmosphere of Earth are considered in climate science.
Dianne Kasnic Prinz was an American scientist, a physicist with the United States Naval Research Laboratory. She trained as an astronaut, and was mission communicator for STS-51-F.