Curcuminoid

Last updated
Curcumin Curcumin structure (keto).svg
Curcumin
Demethoxycurcumin Demethoxycurcumin.png
Demethoxycurcumin
Bisdemethoxycurcumin Bisdemethoxycurcumin.png
Bisdemethoxycurcumin

A curcuminoid is a linear diarylheptanoid, a relatively small class of plant secondary metabolites that includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin, all isolated from turmeric (curcuma longa). These compounds are natural phenols and produce a pronounced yellow color that is often used to color foods and medicines. Curcumin is obtained from the root of turmeric.

Contents

Curcuminoids are soluble in dimethyl sulfoxide (DMSO), acetone and ethanol, [1] but are poorly soluble in lipids. It is possible to increase curcuminoid solubility in aqueous phase with surfactants or co-surfactants. [2] Most common derivatives have different substituents on the phenyl groups. [1] There is an increasing demand for demethoxycurcumin, bisdemethoxycurcumin, and other curcuminoids because of their biological activity. [2]

Cyclodextrins

Curcuminoids form a more stable complex with solutions which contain cyclodextrin towards hydrolytic degradations. [3] The stability differs between size and characterization of the cyclodextrins that are used. Dissolution of demethoxycurcumin, bisdemethoxycurcumin and curcumin are greatest in the hydroxypropyl-γ-cyclodextrin (HPγCD) cavity. The curcuminoids which have a substituent connected to the phenyl groups show more affinity for the HPγCD compound. Degradation rate is depended on pH of the solution and how much protection the cyclodextrins provide the curcuminoids. The derivatives are usually more stable than curcumin against hydrolysis in cyclodextrin solution. No covalent bonds are present between the cyclodextrins and the curcuminoids so they are easily released from the complex by simple solvent effects. [1]

Composition and production

The curcumin derivatives demethoxycurcumin and bisdemethoxycurcumin may have antioxidant activities useful in maintaining shelf-life of food products. [2] Pure chemicals of curcumin and its derivatives are not available in the open market. Commercially available curcumin contains 77% curcumin, 17% demethoxycurcumin and 3% bisdemethoxycurcumin from the herb Curcuma longa . [2]

Curcumin is mainly produced in industry as a pigment by using turmeric oleoresin as the starting material which curcuminoids can be isolated from. After the isolation of the curcuminoids, the extract which is about 75% liquor mainly contains oil, resin and more curcuminoids which can be isolated further. [2]

Research

Laboratory and clinical studies have not confirmed any medical use for curcumin, which is difficult to study because it is both unstable and poorly bioavailable, and is unlikely to produce useful lead compounds for drug development. Curcumin, which shows positive results in most drug discovery assays, is regarded as a false lead that medicinal chemists include among "pan-assay interference compounds". This attracts undue experimental attention while failing to advance as viable therapeutic or drug leads. [4] [5] [6]

Related Research Articles

<span class="mw-page-title-main">Turmeric</span> Plant used as spice

Turmeric or Curcuma longa, is a flowering plant in the ginger family Zingiberaceae. It is a perennial, rhizomatous, herbaceous plant native to the Indian subcontinent and Southeast Asia that requires temperatures between 20 and 30 °C and high annual rainfall to thrive. Plants are gathered each year for their rhizomes, some for propagation in the following season and some for consumption.

<span class="mw-page-title-main">Curcumin</span> Principal curcuminoid of turmeric

Curcumin is a bright yellow chemical produced by plants of the Curcuma longa species. It is the principal curcuminoid of turmeric, a member of the ginger family, Zingiberaceae. It is sold as a herbal supplement, cosmetics ingredient, food flavoring, and food coloring.

<span class="mw-page-title-main">Cyclodextrin</span> Polysaccharide with six glucose units

Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, drug delivery, and chemical industries, as well as agriculture and environmental engineering.

<span class="mw-page-title-main">Rosocyanine</span> Chemical compound

Rosocyanine and rubrocurcumin are two red colored materials, which are formed by the reaction between curcumin and borates.

<span class="mw-page-title-main">Pinosylvin</span> Chemical compound

Pinosylvin is an organic compound with the formula C6H5CH=CHC6H3(OH)2. A white solid, it is related to trans-stilbene, but with two hydroxy groups on one of the phenyl substituents. It is very soluble in many organic solvents, such as acetone.

Adenosine A<sub>2B</sub> receptor Cell surface receptor found in humans

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

<span class="mw-page-title-main">ADX-47273</span> Chemical compound

ADX-47273 is a research pharmaceutical developed by Addex Therapeutics which acts as a positive allosteric modulator (PAM) selective for the metabotropic glutamate receptor subtype mGluR5. It has nootropic and antipsychotic effects in animal studies, and has been used as a lead compound to develop improved derivatives.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<span class="mw-page-title-main">DS-1 (drug)</span> Chemical compound

DS-1 is a drug from the imidazopyridine family, which is the first drug developed that acts as a GABAA receptor positive allosteric modulator (PAM) selective for the α4β3δ subtype, which is not targeted by other GABAA receptor PAMs such as the benzodiazepines or other nonbenzodiazepine drugs. Novel selective drugs such as DS-1 are useful in the study of this receptor subtype.

<span class="mw-page-title-main">Substituted cathinone</span> Class of chemical compounds

Substituted cathinones, which include some stimulants and entactogens, are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions. Cathinone occurs naturally in the plant khat whose leaves are chewed as a recreational drug.

<span class="mw-page-title-main">Rhodanine</span> Chemical compound

Rhodanine is a 5-membered heterocyclic organic compound possessing a thiazolidine core. It was discovered in 1877 by Marceli Nencki who named it "Rhodaninsaure" in reference to its synthesis from ammonium rhodanide and chloroacetic acid in water.

Desmethoxycurcumin is a curcuminoid found in turmeric. Commercial grade curcumin contains a mixture of curcuminoids.

<span class="mw-page-title-main">Diarylheptanoid</span>

The diarylheptanoids are polyphenols and a relatively small class of plant secondary metabolites. Diarylheptanoids consist of two aromatic rings joined by a seven carbons chain (heptane) and having various substituents. They can be classified into linear (curcuminoids) and cyclic diarylheptanoids. The best known member is curcumin, which is isolated from turmeric and is known as food coloring E100. Some other Curcuma species, such as Curcuma comosa also produce diarylheptanoids.

1,7-Bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one is a natural product, a curcuminoid antioxidant found in turmeric and torch ginger.

Curcumin synthase categorizes three enzyme isoforms, type III polyketide synthases (PKSs) present in the leaves and rhizome of the turmeric plant that synthesize curcumin. CURS1-3 are responsible for the hydrolysis of feruloyldiketide-CoA, previously produced in the curcuminoid pathway, and a decarboxylative condensation reaction that together comprise one of the final steps in the synthesis pathway for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, the compounds that give turmeric both its distinctive yellow color, and traditional medical benefits. CURS should not be confused with Curcuminoid Synthase (CUS), which catalyzes the one-pot synthesis of bisdemethoxycurcumin in Oryza sativa.

<span class="mw-page-title-main">Protide</span>

The ProTide technology is a prodrug approach used in molecular biology and drug design. It is designed to deliver nucleotide analogues into the cell. This technology was invented by Professor Chris McGuigan from the School of Pharmacy and Pharmaceutical Sciences at Cardiff University in the early 1990s. ProTides form a critical part of antiviral drugs such as sofosbuvir, tenofovir alafenamide, and remdesivir.

Pan-assay interference compounds (PAINS) are chemical compounds that often give false positive results in high-throughput screens. PAINS tend to react nonspecifically with numerous biological targets rather than specifically affecting one desired target. A number of disruptive functional groups are shared by many PAINS.

<span class="mw-page-title-main">Substituted benzofuran</span> Class of chemical compounds

The substituted benzofurans are a class of chemical compounds based on the heterocyclyc and polycyclic compound benzofuran. Many medicines use the benzofuran core as a scaffold, but most commonly the term is used to refer to the simpler compounds in this class which include numerous psychoactive drugs, including stimulants, psychedelics and empathogens. In general, these compounds have a benzofuran core to which a 2-aminoethyl group is attached, and combined with a range of other substituents. Some psychoactive derivatives from this family have been sold under the name Benzofury.

<i>para</i>-Aminoblebbistatin Chemical compound

para-Aminoblebbistatin is a water-soluble, non-fluorescent, photostable myosin II inhibitor, developed from blebbistatin. Among the several blebbistatin derivatives it is one of the most promising for research applications. Furthermore, it has a favourable overall profile considering inhibitory properties and ADME calculations.

<span class="mw-page-title-main">EF-24</span> Chemical compound

EF-24 is a compound that is a synthetic analogue of curcumin, a bioactive phytochemical from turmeric. Curcumin has antioxidant, antibiotic, anti-inflammatory and anti-cancer properties in vitro but has low potency and very poor bioavailability when taken orally, resulting in limited efficacy. EF-24 was developed to try to improve upon these properties, and has been found to be around 10x more potent than curcumin and with much higher systemic bioavailability. It has never been developed for medical use, though research continues to investigate whether it may be useful as an adjuvant treatment for some cancers alongside conventional chemotherapy drugs.

References

  1. 1 2 3 Tiyaboonchai W, Tungpradit W, Plianbangchang P (June 2007). "Formulation and characterization of curcuminoids loaded solid lipid nanoparticles". Int J Pharm. 337 (1–2): 299–306. doi:10.1016/j.ijpharm.2006.12.043. PMID   17287099.
  2. 1 2 3 4 5 Jayaprakasha GK, Rao LJ, Sakariah KK (2006). "Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin". Food Chemistry. 98 (4): 720–4. doi:10.1016/j.foodchem.2005.06.037.
  3. Tønnesen, H; Mássonb, M; Loftsson, T (September 2002). "Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stabilit". International Journal of Pharmaceutics. 244 (1–2): 127–135. doi:10.1016/S0378-5173(02)00323-X.
  4. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (March 2017). "The Essential Medicinal Chemistry of Curcumin". Journal of Medicinal Chemistry. 60 (5): 1620–1637. doi:10.1021/acs.jmedchem.6b00975. PMC   5346970 . PMID   28074653.
    See also: Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (May 2017). "Curcumin May (Not) Defy Science". ACS Medicinal Chemistry Letters. 8 (5): 467–470. doi:10.1021/acsmedchemlett.7b00139. PMC   5430405 . PMID   28523093.
  5. Baker M (January 2017). "Deceptive curcumin offers cautionary tale for chemists". Nature. 541 (7636): 144–145. Bibcode:2017Natur.541..144B. doi: 10.1038/541144a . PMID   28079090.
  6. Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF (March 2016). "Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?". Journal of Medicinal Chemistry. 59 (5): 1671–90. doi:10.1021/acs.jmedchem.5b01009. PMC   4791574 . PMID   26505758.