Names | |
---|---|
Preferred IUPAC name (2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid | |
Other names 2-propenoic acid, 3-(4-hydroxy-3-methoxyphenyl)- ferulic acid 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid 3-(4-hydroxy-3-methoxyphenyl)acrylic acid 3-methoxy-4-hydroxycinnamic acid 4-hydroxy-3-methoxycinnamic acid (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid Coniferic acid trans-ferulic acid (E)-ferulic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.013.173 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C10H10O4 | |
Molar mass | 194.186 g·mol−1 |
Appearance | Crystalline powder |
Melting point | 168 to 172 °C (334 to 342 °F; 441 to 445 K) |
0.78 g/L [1] | |
Acidity (pKa) | 4.61 [1] |
Hazards | |
NFPA 704 (fire diamond) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Ferulic acid is a hydroxycinnamic acid derivative and a phenolic compound. It is an organic compound with the formula (CH3O)HOC6H3CH=CHCO2H. The name is derived from the genus Ferula , referring to the giant fennel ( Ferula communis ). Classified as a phenolic phytochemical, ferulic acid is an amber colored solid. Esters of ferulic acid are found in plant cell walls, covalently bonded to hemicellulose such as arabinoxylans. [2] Salts and esters derived from ferulic acid are called ferulates.
Ferulic acid is ubiquitous in the plant kingdom, including a number of vegetable sources. It occurs in particularly high concentrations in popcorn and bamboo shoots. [3] [4] It is a major metabolite of chlorogenic acids in humans along with caffeic and isoferulic acid, and is absorbed in the small intestine, whereas other metabolites such as dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate are produced from chlorogenic acid in the large intestine by the action of gut flora. [5]
In cereals, ferulic acid is localized in the bran – the hard outer layer of grain. In wheat, phenolic compounds are mainly found in the form of insoluble bound ferulic acid and may be relevant to resistance to wheat fungal diseases. [6] The highest known concentration of ferulic acid glucoside has been found in flaxseed (4.1±0.2 g/kg). [7] It is also found in barley grain. [8]
Asterid eudicot plants can also produce ferulic acid. The tea brewed from the leaves of yacón (Smallanthus sonchifolius), a plant traditionally grown in the northern and central Andes, contains quantities of ferulic acid. In legumes, the white bean variety navy bean is the richest source of ferulic acid among the common bean ( Phaseolus vulgaris ) varieties. [9] It is also found in horse grams (Macrotyloma uniflorum).[ citation needed ]
Although there are many sources of ferulic acid in nature, its bioavailability depends on the form in which it is present: free ferulic acid has limited solubility in water, and hence poor bioavailability. In wheat grain, ferulic acid is found bound to cell wall polysaccharides, allowing it to be released and absorbed in the small intestine. [10]
Ferulic acid has been identified in Chinese medicine herbs such as Angelica sinensis (female ginseng), Cimicifuga heracleifolia [11] and Ligusticum chuangxiong . It is also found in the tea brewed from the European centaury ( Centaurium erythraea ), a plant used as a medical herb in many parts of Europe. [12]
Cooked sweetcorn releases increased levels of ferulic acid. [13] As plant sterol esters, this compound is naturally found in rice bran oil, a popular cooking oil in several Asian countries. [14]
Ferulic acid glucoside can be found in commercial breads containing flaxseed. [15] Rye bread contains ferulic acid dehydrodimers. [16]
Ferulic acid is biosynthesized in plants from caffeic acid by the action of the enzyme caffeate O-methyltransferase. [17] [2]
In a proposed ferulic acid biosynthetic pathway for Escherichia coli , L-tyrosine is converted to 4-coumaric acid by tyrosine ammonia lyase, which is converted to caffeic acid by Sam5, which is then converted to ferulic acid by caffeic acid methyltransferase. [18]
Ferulic acid, together with dihydroferulic acid, is a component of lignocellulose, serving to crosslink the lignin and polysaccharides, thereby conferring rigidity to the cell walls. [19]
It is an intermediate in the synthesis of monolignols, the monomers of lignin, and is also used for the synthesis of lignans.
Ferulic acid is converted by certain strains of yeast, notably strains used in brewing of wheat beers, such as Saccharomyces delbrueckii (Torulaspora delbrueckii), to 4-vinyl guaiacol (2-methoxy-4-vinylphenol) which gives beers such as Weissbier and Wit their distinctive clove-like flavour. Saccharomyces cerevisiae (dry baker's yeast) and Pseudomonas fluorescens are also able to convert trans-ferulic acid into 2-methoxy-4-vinylphenol. [20] In P. fluorescens, a ferulic acid decarboxylase has been isolated. [21]
Ferulic acid is one of the compounds that initiate the vir (virulence) region of Agrobacterium tumefaciens , inducing it to infect plant cells. [22]
It can be extracted from wheat bran and maize bran using concentrated alkali. [23]
Vanillin is an organic compound with the molecular formula C8H8O3. It is a phenolic aldehyde. Its functional groups include aldehyde, hydroxyl, and ether. It is the primary component of the extract of the vanilla bean. Synthetic vanillin is now used more often than natural vanilla extract as a flavoring in foods, beverages, and pharmaceuticals.
Secoisolariciresinol diglucoside (SDG) is an antioxidant phytoestrogen present in flax, sunflower, sesame, and pumpkin seeds. In food, it can be found in commercial breads containing flaxseed. It is a precursor of mammal lignans which are produced in the colon from chemicals in foods.
Chlorogenic acid (CGA) is the ester of caffeic acid and (−)-quinic acid, functioning as an intermediate in lignin biosynthesis. The term chlorogenic acids refers to a related polyphenol family of esters, including hydroxycinnamic acids with quinic acid.
Caffeic acid is an organic compound with the formula (HO)2C6H3CH=CHCO2H. It is a polyphenol. It is a yellow solid. Structurally, it is classified as a hydroxycinnamic acid. The molecule consists of both phenolic and acrylic functional groups. It is found in all plants as an intermediate in the biosynthesis of lignin, one of the principal components of biomass and its residues. It is unrelated to caffeine.
Rutin is the glycoside combining the flavonol quercetin and the disaccharide rutinose. It is a flavonoid glycoside found in a wide variety of plants, including citrus.
p-Coumaric acid is an organic compound with the formula HOC6H4CH=CHCO2H. It is one of the three isomers of hydroxycinnamic acid. It is a white solid that is only slightly soluble in water but very soluble in ethanol and diethyl ether.
Polyphenol oxidase, an enzyme involved in fruit browning, is a tetramer that contains four atoms of copper per molecule.
Diferulic acids (also known as dehydrodiferulic acids) are organic compounds that have the general chemical formula C20H18O8, they are formed by dimerisation of ferulic acid. Curcumin and curcuminoids, though having a structure resembling diferulic acids', are not formed that way but through a condensation process. Just as ferulic acid is not the proper IUPAC name, the diferulic acids also tend to have trivial names that are more commonly used than the correct IUPAC name. Diferulic acids are found in plant cell walls, particularly those of grasses.
Olive leaf is the leaf of the olive tree. Although olive oil is well known for its flavor and possible health benefits, the leaf and its extracts remain under preliminary research with unknown effects on human health.
2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat.
Phenolic compounds—natural phenol and polyphenols—occur naturally in wine. These include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.
Caftaric acid is a non-flavonoid phenolic compound.
Arabinoxylan is a form of the hemicellulose xylan found in both the primary and secondary cell walls of plants which in addition to xylose contains substantial amounts of another pentose sugar, arabinose. The term arabinoxylan usually refers to feruloyl-arabinoxylan from grasses and other commelinids containing moieties of the phenolic ferulic acid that can undergo oxidative coupling forming crosslinks between arabinoxylan chains and with lignin. Whilst arabinose has been found linked to xylan in non-commelinid plants, ferulic acid has not been reported on these and unlike feruloyl-arabinoxylan these arabinoxylans are not monophyletic. The remainder of this article refers to feruloyl-arabinoxylan from cell walls of grasses and other commelinid species.
Phenolic acids or phenolcarboxylic acids are phenolic compounds and types of aromatic acid compounds. Included in that class are substances containing a phenolic ring and an organic carboxylic acid function. Two important naturally occurring types of phenolic acids are hydroxybenzoic acids and hydroxycinnamic acids, which are derived from non-phenolic molecules of benzoic and cinnamic acid, respectively.
In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.
Pteris ensiformis, the slender brake, silver lace fern, sword brake fern, or slender brake fern, is a plant species of the genus Pteris in the family Pteridaceae. It is found in Asia and the Pacific.
Tergallic acids are trimers of gallic acid, often found naturally in the form of glycosides. Tergallic acid O- or C-glucosides that can be found in acorns of several Quercus (oak) species. The dehydrated tergallic acid C-glucoside and tergallic acid O-glucoside can be characterised in the acorns of Quercus macrocarpa. Dehydrated tergallic-C-glucoside can be found in the cork from Quercus suber.
p-Coumaric acid glucoside is a hydroxycinnamic acid, an organic compound found in commercial breads containing flaxseed.
Catechin-7-O-glucoside is a flavan-3-ol glycoside formed from catechin.