Tartaric acid

Last updated
Tartaric acid [1]
Tartaric acid.svg
Tartaric-acid-3D-balls.png
Ball-and-stick model of L-(+)-tartaric acid
Names
Preferred IUPAC name
2,3-Dihydroxybutanedioic acid
Other names
Tartaric acid
2,3-Dihydroxysuccinic acid
Threaric acid
Racemic acid
Uvic acid
Paratartaric acid
Winestone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.121.903 OOjs UI icon edit-ltr-progressive.svg
E number E334 (antioxidants, ...)
KEGG
MeSH tartaric+acid
PubChem CID
  • 875  unspecified isomer
UNII
  • InChI=1S/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10) Yes check.svgY
    Key: FEWJPZIEWOKRBE-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)
    Key: FEWJPZIEWOKRBE-UHFFFAOYAZ
  • O=C(O)C(O)C(O)C(=O)O
Properties
C4H6O6 (basic formula)
HO2CCH(OH)CH(OH)CO2H (structural formula)
Molar mass 150.087 g/mol
AppearanceWhite powder
Density 1.737 g/cm3 (R,R- and S,S-)
1.79 g/cm3 (racemate)
1.886 g/cm3 (meso)
Melting point 169, 172 °C (R,R- and S,S-)
206 °C (racemate)
165-6 °C (meso)
  • 1.33 kg/L (L or D-tartaric)
  • 0.21 kg/L (DL, racemic)
  • 1.25 kg/L ("meso")
Acidity (pKa)L(+) 25 °C :
pKa1= 2.89, pKa2= 4.40
meso 25 °C:
pKa1= 3.22, pKa2= 4.85

[2]

Conjugate base Bitartrate
−67.5·10−6 cm3/mol
Hazards
GHS labelling: [3]
GHS-pictogram-acid.svg
Danger
H318
P280, P305+P351+P338+P310
Related compounds
Other cations
Monosodium tartrate
Disodium tartrate
Monopotassium tartrate
Dipotassium tartrate
Butyric acid
Succinic acid
Dimercaptosuccinic acid
Malic acid
Maleic acid
Fumaric acid
Related compounds
2,3-Butanediol
Cichoric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tartaric acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes but also in tamarinds, bananas, avocados, and citrus. [1] Its salt, potassium bitartrate, commonly known as cream of tartar, develops naturally in the process of fermentation. Potassium bitartrate is commonly mixed with sodium bicarbonate and is sold as baking powder used as a leavening agent in food preparation. The acid itself is added to foods as an antioxidant E334 and to impart its distinctive sour taste. Naturally occurring tartaric acid is a useful raw material in organic chemical synthesis. Tartaric acid, an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics and is a dihydroxyl derivative of succinic acid.

Contents

History

Tartaric acid has been known to winemakers for centuries. However, the chemical process for extraction was developed in 1769 by the Swedish chemist Carl Wilhelm Scheele. [4]

Tartaric acid played an important role in the discovery of chemical chirality. This property of tartaric acid was first observed in 1832 by Jean Baptiste Biot, who observed its ability to rotate polarized light. [5] [6] Louis Pasteur continued this research in 1847 by investigating the shapes of sodium ammonium tartrate crystals, which he found to be chiral. By manually sorting the differently shaped crystals, Pasteur was the first to produce a pure sample of levotartaric acid. [7] [8] [9] [10] [11]

Stereochemistry

Tartaric acid crystals drawn as if seen through an optical microscope TartrateCrystal.svg
Tartaric acid crystals drawn as if seen through an optical microscope

Naturally occurring form of the acid is dextro tartaric acid or L-(+)-tartaric acid (obsolete name d-tartaric acid). Because it is available naturally, it is cheaper than its enantiomer and the meso isomer. The dextro and levo prefixes are archaic terms. [12] Modern textbooks refer to the natural form as (2R,3R)-tartaric acid (L-(+)-tartaric acid), and its enantiomer as (2S,3S)-tartaric acid (D-(-)-tartaric acid). The meso diastereomer is referred to as (2R,3S)-tartaric acid or (2S,3R)-tartaric acid.

Tartaric acid in Fehling's solution binds to copper(II) ions, preventing the formation of insoluble hydroxide salts.

DL-tartaric acid (racemic acid) (when in 1:1 ratio)mesotartaric acid
dextrotartaric acid
(L-(+)-tartaric acid)
levotartaric acid
(D-(−)-tartaric acid)
L-tartaric acid.png D-tartaric acid.png Meso-Weinsaure Spiegel.svg
Forms of tartaric acid
Common name Tartaric acidLevotartaric acidDextrotartaric acidMesotartaric acidRacemic acid
Synonyms(2S,3S)-tartaric acid
(S,S)-tartaric acid
(−)-tartaric acid
l-tartaric acid (obsolete)
levotartaric acid
D-tartaric acid
D-threaric acid
('unnatural isomer') [18]
(2R,3R)-tartaric acid
(R,R)-tartaric acid
(+)-tartaric acid
d-tartaric acid (obsolete)
L-tartaric acid
L-threaric acid
(‘natural isomer’) [19]
(2R,3S)-tartaric acid
meso-tartaric acid
erythraric acid
rac-(2R,3S)-tartaric acid
(2RS,3SR)-tartaric acid
(±)-tartaric acid
DL-tartaric acid
dl-tartaric acid (obsolete)
paratartaric acid
uvic acid
PubChem CID 875 from PubChem CID 439655 from PubChem CID 444305 from PubChem CID 78956 from PubChem CID 5851 from PubChem
EINECS number 205-695-6 201-766-0 205-696-1 205-105-7
CAS number 526-83-0147-71-787-69-4147-73-9133-37-9

Production

L-(+)-Tartaric acid

The L-(+)-tartaric acid isomer of tartaric acid is industrially produced in the largest amounts. It is obtained from lees, a solid byproduct of fermentations. The former byproducts mostly consist of potassium bitartrate (KHC4H4O6). This potassium salt is converted to calcium tartrate (CaC4H4O6) upon treatment with calcium hydroxide (Ca(OH)2): [20]

KH(C4H4O6) + Ca(OH)2 → Ca(C4H4O6) + KOH + H2O

In practice, higher yields of calcium tartrate are obtained with the addition of calcium sulfate. Calcium tartrate is then converted to tartaric acid by treating the salt with aqueous sulfuric acid:

Ca(C4H4O6) + H2SO4 → H2(C4H4O6) + CaSO4

Racemic tartaric acid

Racemic tartaric acid can be prepared in a multistep reaction from maleic acid. In the first step, the maleic acid is epoxidized by hydrogen peroxide using potassium tungstate  [ de ] as a catalyst. [20]

HO2CCH=CHCO2H + H2O2 → HO2C(CHCH)(O)CO2H + H2O

In the next step, the epoxide is hydrolyzed.

HO2C(CHCH)(O)CO2H + H2O → HO2CCH(OH)CH(OH)CO2H

meso-Tartaric acid

A mixture of racemic acid and meso-tartaric acid is formed when dextro-Tartaric acid is heated in water at 165 °C for about 2 days. meso-Tartaric acid can also be prepared from dibromosuccinic acid using silver hydroxide: [21]

HO2CCHBrCHBrCO2H + 2 AgOH → HO2CCH(OH)CH(OH)CO2H + 2 AgBr

meso-Tartaric acid can be separated from residual racemic acid by crystallization, the racemate being less soluble.

Reactivity

L-(+)-tartaric acid, can participate in several reactions. As shown the reaction scheme below, dihydroxymaleic acid is produced upon treatment of L-(+)-tartaric acid with hydrogen peroxide in the presence of a ferrous salt.

HO2CCH(OH)CH(OH)CO2H + H2O2 → HO2CC(OH)C(OH)CO2H + 2 H2O

Dihydroxymaleic acid can then be oxidized to tartronic acid with nitric acid. [22]

Derivatives

Tartar emetic Brechweinstein.jpg
Tartar emetic
Commercially produced tartaric acid CommercialTartaric.jpg
Commercially produced tartaric acid

Important derivatives of tartaric acid include:

Tartaric acid is a muscle toxin, which works by inhibiting the production of malic acid, and in high doses causes paralysis and death. [26] The median lethal dose (LD50) is about 7.5 grams/kg for a human, 5.3 grams/kg for rabbits, and 4.4 grams/kg for mice. [27] Given this figure, it would take over 500 g (18 oz) to kill a person weighing 70 kg (150 lb) with 50% probability, so it may be safely included in many foods, especially sour-tasting sweets. As a food additive, tartaric acid is used as an antioxidant with E number E334; tartrates are other additives serving as antioxidants or emulsifiers.

When cream of tartar is added to water, a suspension results which serves to clean copper coins very well, as the tartrate solution can dissolve the layer of copper(II) oxide present on the surface of the coin. The resulting copper(II)-tartrate complex is easily soluble in water.

Tartaric acid in wine

Unpurified potassium bitartrate can take on the color of the grape juice from which it was separated. HomemadeTartaric.jpg
Unpurified potassium bitartrate can take on the color of the grape juice from which it was separated.

Tartaric acid may be most immediately recognizable to wine drinkers as the source of "wine diamonds", the small potassium bitartrate crystals that sometimes form spontaneously on the cork or bottom of the bottle. These "tartrates" are harmless, despite sometimes being mistaken for broken glass, and are prevented in many wines through cold stabilization (which is not always preferred since it can change the wine's profile). The tartrates remaining on the inside of aging barrels were at one time a major industrial source of potassium bitartrate.

Tartaric acid plays an important role chemically, lowering the pH of fermenting "must" to a level where many undesirable spoilage bacteria cannot live, and acting as a preservative after fermentation. In the mouth, tartaric acid provides some of the tartness in the wine, although citric and malic acids also play a role.

Tartaric acid in fruits

Grapes and tamarinds have the highest levels of tartaric acid concentration. Other fruits with tartaric acid are bananas, avocados, prickly pear fruit, apples, cherries, papayas, peaches, pears, pineapples, strawberries, mangoes and citrus fruits. [1] [28]

Trace amounts of tartaric acid have been found in cranberries and other berries. [29]

Tartaric acid is also present in the leaves and pods of Pelargonium plants and beans.

Applications

Tartaric acid and its derivatives have a plethora of uses in the field of pharmaceuticals. For example, it has been used in the production of effervescent salts, in combination with citric acid, to improve the taste of oral medications. [22] The potassium antimonyl derivative of the acid known as tartar emetic is included, in small doses, in cough syrup as an expectorant.

Tartaric acid also has several applications for industrial use. The acid has been observed to chelate metal ions such as calcium and magnesium. Therefore, the acid has served in the farming and metal industries as a chelating agent for complexing micronutrients in soil fertilizer and for cleaning metal surfaces consisting of aluminium, copper, iron, and alloys of these metals, respectively. [20]

Toxicity in canines

While tartaric acid is well-tolerated by humans and lab animals, an April 2021 letter to the editor of JAVMA hypothesized that the tartaric acid in grapes could be the cause of grape and raisin toxicity in dogs. [30] [31] Other studies have observed tartaric acid toxicity in kidney cells of dogs, but not in human kidney cells. [32]

In dogs, the tartaric acid of tamarind causes acute kidney injury, which can often be fatal. [33]

A review identified a relationship between grape ingestion and illness, though the specific type or quantity of grapes that cause toxicity remains unclear. Grape ingestion commonly leads to gastrointestinal and/or renal issues, with treatment depending on the symptoms; outcomes can vary. [34]

Related Research Articles

<span class="mw-page-title-main">Louis Pasteur</span> French chemist, pharmacist and microbiologist (1822–1895)

Louis Pasteur was a French chemist, pharmacist, and microbiologist renowned for his discoveries of the principles of vaccination, microbial fermentation, and pasteurization, the last of which was named after him. His research in chemistry led to remarkable breakthroughs in the understanding of the causes and preventions of diseases, which laid down the foundations of hygiene, public health and much of modern medicine. Pasteur's works are credited with saving millions of lives through the developments of vaccines for rabies and anthrax. He is regarded as one of the founders of modern bacteriology and has been honored as the "father of bacteriology" and the "father of microbiology".

<span class="mw-page-title-main">Potassium ferrocyanide</span> Chemical compound

Potassium hexacyanidoferrate(II) is the inorganic compound with formula K4[Fe(CN)6]·3H2O. It is the potassium salt of the coordination complex [Fe(CN)6]4−. This salt forms lemon-yellow monoclinic crystals.

In chemistry, a racemic mixture or racemate is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates.

<span class="mw-page-title-main">Tamarind</span> Leguminous tree bearing edible fruit

Tamarind is a leguminous tree bearing edible fruit that is indigenous to tropical Africa and naturalized in Asia. The genus Tamarindus is monotypic, meaning that it contains only this species. It belongs to the family Fabaceae.

<span class="mw-page-title-main">Phthalic acid</span> Aromatic organic compound with formula C6H4(COOH)2

In organic chemistry, phthalic acid is an aromatic dicarboxylic acid, with formula C6H4(CO2H)2 and structure HO(O)C−C6H4−C(O)OH. Although phthalic acid is of modest commercial importance, the closely related derivative phthalic anhydride is a commodity chemical produced on a large scale. Phthalic acid is one of three isomers of benzenedicarboxylic acid, the others being isophthalic acid and terephthalic acid.

<span class="mw-page-title-main">Potassium sodium tartrate</span> Chemical compound

Potassium sodium tartrate tetrahydrate, also known as Rochelle salt, is a double salt of tartaric acid first prepared by an apothecary, Pierre Seignette, of La Rochelle, France. Potassium sodium tartrate and monopotassium phosphate were the first materials discovered to exhibit piezoelectricity. This property led to its extensive use in crystal phonograph cartridges, microphones and earpieces during the post-World War II consumer electronics boom of the mid-20th century. Such transducers had an exceptionally high output with typical pick-up cartridge outputs as much as 2 volts or more. Rochelle salt is deliquescent so any transducers based on the material deteriorated if stored in damp conditions.

<span class="mw-page-title-main">Potassium bitartrate</span> Chemical salt used in cooking as cream of tartar

Potassium bitartrate, also known as potassium hydrogen tartrate, with formula KC4H5O6, is a chemical compound with a number of uses. It is the potassium acid salt of tartaric acid (a carboxylic acid). In cooking, it is known as cream of tartar.

<span class="mw-page-title-main">Racemic acid</span>

Racemic acid is an old name for an optically inactive or racemic form of tartaric acid. It is an equal mixture of two mirror-image isomers (enantiomers), optically active in opposing directions. Racemic acid does not occur naturally in grape juice, although L-tartaric acid does.

<span class="mw-page-title-main">Succimer</span> Medication used to treat lead, mercury, and arsenic poisoning

Succimer, sold under the brand name Chemet among others, is a medication used to treat lead, mercury, and arsenic poisoning. When radiolabeled with technetium-99m, it is used in many types of diagnostic testing. A full course of Succimer lasts for 19 days of oral administration. A second course should be given when more than two weeks pass after the first course.

<span class="mw-page-title-main">Ammonium chlorate</span> Chemical compound

Ammonium chlorate is an inorganic compound with the formula NH4ClO3.

<span class="mw-page-title-main">Carboxymethyl cellulose</span> Cellulose derivative grafted with carboxymethyl groups

Carboxymethyl cellulose (CMC) or cellulose gum is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used in its sodium salt form, sodium carboxymethyl cellulose. It used to be marketed under the name Tylose, a registered trademark of SE Tylose.

<span class="mw-page-title-main">Tartrate</span> Chemical compound

A tartrate is a salt or ester of the organic compound tartaric acid, a dicarboxylic acid. The formula of the tartrate dianion is OOC-CH(OH)-CH(OH)-COO or C4H4O62−.

<span class="mw-page-title-main">Calcium tartrate</span> Chemical compound

Calcium tartrate, exactly calcium L-tartrate, is a byproduct of the wine industry, prepared from wine fermentation dregs. It is the calcium salt of L-tartaric acid, an acid most commonly found in grapes. Its solubility decreases with lower temperature, which results in the forming of whitish crystalline clusters as it precipitates. As E number E354, it finds use as a food preservative and acidity regulator. Like tartaric acid, calcium tartrate has two asymmetric carbons, hence it has two chiral isomers and a non-chiral isomer (meso-form). Most calcium tartrate of biological origin is the chiral levorotatory (–) isomer.

Chiral resolution, or enantiomeric resolution, is a process in stereochemistry for the separation of racemic mixture into their enantiomers. It is an important tool in the production of optically active compounds, including drugs. Another term with the same meaning is optical resolution.

In enzymology, a tartrate epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Monosodium tartrate</span> Chemical compound

Monosodium tartrate or sodium bitartrate is a sodium acid salt of tartaric acid. As a food additive it is used as an acidity regulator and is known by the E number E335. As an analytical reagent, it can be used in a test for ammonium cation which gives a white precipitate.

<span class="mw-page-title-main">Antimony potassium tartrate</span> Chemical compound

Antimony potassium tartrate, also known as potassium antimonyl tartrate, potassium antimontarterate, or tartar emetic, has the formula K2Sb2(C4H2O6)2. The compound has long been known as a powerful emetic, and was used in the treatment of schistosomiasis and leishmaniasis. It is used as a resolving agent. It typically is obtained as a hydrate.

<span class="mw-page-title-main">Metatartaric acid</span> Chemical compound

Metatartaric acid is a food additive. Chemically, it is a polymeric lactone of variable composition and different molecular weights obtained through a dehydration reaction by heating tartaric acid.

<span class="mw-page-title-main">Choline bitartrate</span> Chemical compound

Choline bitartrate is an organic compound with the chemical formula [(CH3)3NCH2CH2OH]+HOOC−CH(OH)−CH(OH)−COO. It is a white crystalline powder with an acid taste. It is hygroscopic when exposed to air. Modern texts refer to the choline salt of the natural form of tartaric acid, that is, the salt called choline dextrobitartrate, choline (2R,3R)-bitartrate or choline L-(+)-bitartrate.

<span class="mw-page-title-main">Sodium ammonium tartrate</span> Chemical compound

Sodium ammonium tartrate (NAT) is an organic compound with the formula Na(NH4)[O2CCH(OH)CH(OH)CO2]. The salt is derived from tartaric acid by neutralizing with ammonia and with sodium hydroxide. Louis Pasteur obtained enantiopure crystals of the tetrahydrate of NAT, via the process of spontaneous resolution. His discovery led to increased study of optical activity, which eventually was shown to have broad implications. Many modifications of this salt have been investigated by X-ray crystallography, including the racemate, which crystallizes as the monohydrate.

References

  1. 1 2 3 Tartaric Acid – Compound Summary, PubChem.
  2. Dawson, R.M.C. et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
  3. GHS: Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  4. Retzius, Anders Jahan (1770) "Försök med vinsten och dess syra" (Experiments with cream of tartar and its acid), Kungliga Vetenskapsakademiens Handlingar (Proceedings of the Royal Academy of Sciences), 31 : 207–213. From p. 209: "§. 6. Dessa försök omtalte jag för Hr. Carl Wilhelm Scheele (en snabb och lårgirug Pharmaciæ Studiosus) … " (§. 6. I mention these experiments on behalf of Mr. Carl Wilhelm Scheele (a quick and studious student of pharmacology) … )
  5. Biot (1835) "Mémoire sur la polarization circulaire et sur ses applications à la chimie organique" (Memoir on circular polarization and on its applications to organic chemistry), Mémoires de l'Académie des sciences de l'Institut, 2nd series, 13 : 39–175. That tartaric acid (acide tartarique cristallisé) rotates plane-polarized light is shown in Table G following p. 168. (Note: This article was read to the French Royal Academy of Sciences on 1832 November 5.)
  6. Biot (1838) "Pour discerner les mélanges et les combinaisons chimiques définies ou non définies, qui agissent sur la lumière polarisée; suivies d'applications aux combinaisons de l'acide tartarique avec l'eau, l'alcool et l'esprit de bois" (In order to discern mixtures and chemical combinations, defined or undefined, which act on polarized light; followed by applications to combinations of tartaric acid with water, alcohol [i.e., ethanol], and spirit of wood [i.e., methanol]), Mémoires de l'Académie des sciences de l'Institut, 2nd series, 15 : 93–279.
  7. Pasteur, L. (1848). "Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire" [Memoir on the relationship which can exist between crystalline form and chemical composition, and on the cause of rotary polarization]. Comptes rendus de l'Académie des sciences de Paris (in French). 26: 535–538.
  8. L. Pasteur (1848) "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire" (On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization), Annales de Chimie et de Physique, 3rd series, 24 : 442–459.
  9. Pasteur, Louis (1850) "Recherches sur les propriétés spécifiques des deux acides qui composent l'acide racémique" [Investigations into the specific properties of the two acids that compose racemic acid], Annales de Chimie et de Physique, 3rd series, 28 (3) : 56–99. See also Plate II. (See also the report of the commission that was appointed to verify Pasteur's findings, pp. 99–117.) [in French]
  10. George B. Kauffman; Robin D. Myers (1998). "Pasteur's resolution of racemic acid: A sesquicentennial retrospect and a new translation" (PDF). The Chemical Educator. 3 (6): 1–4. doi:10.1007/s00897980257a. S2CID   95862598. Archived from the original (PDF) on 2006-01-17.
  11. Flack, H.D. (2009). "Louis Pasteur's discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work" (PDF). Acta Crystallographica A. 65 (5): 371–389. Bibcode:2009AcCrA..65..371F. doi:10.1107/S0108767309024088. PMID   19687573. Archived from the original (PDF) on 2012-09-06.
  12. "Lecture 28: Stereochemical Nomenclature; Racemization and Resolution | CosmoLearning Chemistry". CosmoLearning.
  13. W, T, Astbury (Feb 1923). "The Crystalline Structure and Properties of Tartaric Acid". Proc. R. Soc. A. 102 (718): 506–528. Bibcode:1923RSPSA.102..506A. doi: 10.1098/rspa.1923.0010 .{{cite journal}}: CS1 maint: multiple names: authors list (link), based on P. Groth’s “Chemische Krystallographie".
  14. CRC Handbook of Chemistry and Physics, 49th edition.
  15. Samantha Callear and Michael Hursthouse (2008). "D-Tartaric acid". Crystallography Open Database.
  16. Paul Luner; et al. (Jul 2002). "(+-)-Tartaric acid". Acta Crystallographica Section C. 58 (6): o333–o335. Bibcode:2002AcCrC..58O.333L. doi:10.1107/S0108270102006650. PMID   12050433., "(±)-Tartaric acid". Crystallography Open Database. 2002.
  17. G. A. Bootsma and J. C. Schoone (1967). "Crystal Structures of Meso Tartaric Acid". Acta Crystallogr. 22 (4): 522–532. Bibcode:1967AcCry..22..522B. doi: 10.1107/S0365110X67001070 .
  18. "d-Tartaric acid". PubChem .
  19. "L-(+)-Tartaric acid". PubChem . Archived from the original on May 16, 2015.
  20. 1 2 3 J.-M. Kassaian "Tartaric acid" in Ullmann's Encyclopedia of Industrial Chemistry; VCH: Weinheim, Germany, 2002, 35, 671-678. doi : 10.1002/14356007.a26_163
  21. Augustus Price West. Experimental Organic Chemistry. World Book Company: New York, 1920, 232-237.
  22. 1 2 Blair, G. T.; DeFraties, J. J. (2000). "Hydroxy Dicarboxylic Acids". Kirk Othmer Encyclopedia of Chemical Technology. pp. 1–19. doi:10.1002/0471238961.0825041802120109.a01. ISBN   0471238961.
  23. Zalkin, Allan; Templeton, David H.; Ueki, Tatzuo (1973). "Crystal structure of l-tris(1,10-phenathroline)iron(II) bis(antimony(III) d-tartrate) octahydrate". Inorganic Chemistry. 12 (7): 1641–1646. doi:10.1021/ic50125a033.
  24. Haq, I; Khan, C (1982). "Hazards of a traditional eye-cosmetic--SURMA". The Journal of the Pakistan Medical Association. 32 (1): 7–8. PMID   6804665.
  25. McCallum, RI (1977). "President's address. Observations upon antimony". Proceedings of the Royal Society of Medicine. 70 (11): 756–63. doi:10.1177/003591577707001103. PMC   1543508 . PMID   341167.
  26. Alfred Swaine Taylor, Edward Hartshorne (1861). Medical jurisprudence. Blanchard and Lea. p.  61.
  27. Joseph A. Maga, Anthony T. Tu (1995). Food additive toxicology. CRC Press. pp. 137–138. ISBN   0-8247-9245-9.
  28. J.B. Gurtler, T.L. Mai, in Encyclopedia of Food Microbiology (Second Edition), 2014. PRESERVATIVES | Traditional Preservatives – Organic Acids: Tartaric Acid.
  29. Phytochemicals of Cranberries and Cranberry Products: Characterization, Potential Health Effects, and Processing Stability https://www.researchgate.net/publication/44573816_Phytochemicals_of_Cranberries_and_Cranberry_Products_Characterization_Potential_Health_Effects_and_Processing_Stability
  30. McReynolds, Tony (April 1, 2021). "What causes grape toxicity in dogs? Playdough might have led to a breakthrough". American Animal Hospital Association. Archived from the original on 19 April 2021.
  31. "Letters to the Editor". Journal of the American Veterinary Medical Association. 258 (7). American Veterinary Medical Association (AVMA): 704–707. 2021-04-01. doi:10.2460/javma.258.7.704. ISSN   0003-1488.
  32. Coyne, Sean R.; Landry, Greg M. (2023). "Tartaric acid induces toxicity in Madin–Darby canine kidney cells, but not human kidney-2 cells in vitro, and is prevented by organic anion transporter inhibition and human OAT-4 transfection". Journal of Veterinary Emergency and Critical Care. 33 (3): 298–304. doi:10.1111/vec.13294. ISSN   1479-3261.
  33. Wegenast, CA (2022). "Acute kidney injury in dogs following ingestion of cream of tartar and tamarinds and the connection to tartaric acid as the proposed toxic principle in grapes and raisins". J Vet Emerg Crit Care. 32 (6): 812–816. doi:10.1111/vec.13234. PMID   35869755. S2CID   250989489.
  34. Downs, Joshua; Zoltowska, Agnieszka; Hackney, Thomas; Gardner, David S.; Ashmore, Alison; Brennan, Marnie L. (2024-10-05). "Scoping review exploring the evidence base on Vitis vinifera toxicity in dogs after ingestion: Clinical effects, treatments and types of V. vinifera". Veterinary Record. 195 (7). doi: 10.1002/vetr.4536 . ISSN   0042-4900. PMID   39183495.