Ellagitannin

Last updated
Castalagin is a representative ellagitannin, characterized by coupled gallic acid substituents Castalagin.svg
Castalagin is a representative ellagitannin, characterized by coupled gallic acid substituents

The ellagitannins are a diverse class of hydrolyzable tannins, a type of polyphenol formed primarily from the oxidative linkage of galloyl groups in 1,2,3,4,6-pentagalloyl glucose. Ellagitannins differ from gallotannins, in that their galloyl groups are linked through C-C bonds, whereas the galloyl groups in gallotannins are linked by depside bonds. [1]

Contents

Ellagitannins contain various numbers of hexahydroxydiphenoyl units, as well as galloyl units and/or sanguisorboyl units bounded to sugar moiety. In order to determine the quantity of every individual unit, the hydrolysis of the extracts with trifluoroacetic acid in methanol/water system is performed. Hexahydroxydiphenic acid, created after hydrolysis, spontaneously lactonized to ellagic acid, and sanguisorbic acid to sanguisorbic acid dilactone, while gallic acid remains intact. [2]

Ellagitannins generally form macrocycles, whereas gallotannins do not.

Examples

Metabolism

Degradation

Urolithins, such as urolithin A, are microflora human metabolites of dietary ellagic acid derivatives. [3]

Natural occurrences

Ellagitannins are reported in dicotyledoneous angiospermes, and notably in species in the order Myrtales, such as the pomegranate. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Tannin</span> Class of astringent, bitter plant polyphenolic chemical compounds

Tannins are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids.

<span class="mw-page-title-main">Gallic acid</span> 3,4,5-Trihydroxybenzoic acid

Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6H2(OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. It is a white solid, although samples are typically brown owing to partial oxidation. Salts and esters of gallic acid are termed "gallates".

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include phenolic acids, flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Ellagic acid</span> Natural phenol antioxidant

Ellagic acid is a polyphenol found in numerous fruits and vegetables. It is the dilactone of hexahydroxydiphenic acid.

<span class="mw-page-title-main">Punicalagin</span> Chemical compound

Punicalagin (Pyuni-cala-jen) is an ellagitannin, a type of phenolic compound. It is found as alpha and beta isomers in pomegranates, Terminalia catappa, Terminalia myriocarpa, and in Combretum molle, the velvet bushwillow, a plant species found in South Africa. These three genera are all Myrtales and the last two are both Combretaceae.

The enzyme tannase (EC 3.1.1.20) catalyzes the following reaction:

<span class="mw-page-title-main">Castalagin</span> Chemical compound

Castalagin is an ellagitannin, a type of hydrolyzable tannin, found in oak and chestnut wood and in the stem barks of Terminalia leiocarpa and Terminalia avicennoides.

A gallotannin is any of a class of molecules belonging to the hydrolysable tannins. Gallotannins are polymers formed when gallic acid, a polyphenol monomer, esterifies and binds with the hydroxyl group of a polyol carbohydrate such as glucose.

A hydrolysable tannin or pyrogallol-type tannin is a type of tannin that, on heating with hydrochloric or sulfuric acids, yields gallic or ellagic acids.

<span class="mw-page-title-main">Grandinin</span> Chemical compound

Grandinin is an ellagitannin. It can be found in Melaleuca quinquenervia leaves and in oaks species like the North American white oak and European red oak. It shows antioxydant activity. It is an astringent compound. It is also found in wine, red or white, aged in oak barrels.

<span class="mw-page-title-main">Hexahydroxydiphenic acid</span> Oxidatively coupled derivative of gallic acid

Hexahydroxydiphenic acid is an organic compound with the formula [(HO)3C6HCO2H]2. It is the oxidatively coupled derivative of gallic acid It is a white solid, although samples are typically brown owing to oxidation.

<span class="mw-page-title-main">1,2,3,4,6-Pentagalloyl glucose</span> Chemical compound

1,2,3,4,6-Pentagalloylglucose is the pentagallic acid ester of glucose. It is a gallotannin and the precursor of ellagitannins.

<span class="mw-page-title-main">Pomegranate ellagitannin</span> Ellagitannins found in the pomegranate fruit

The pomegranate ellagitannins, which include punicalagin isomers, are ellagitannins found in the sarcotestas, rind (peel), bark or heartwood of the pomegranate fruit.

<span class="mw-page-title-main">Pedunculagin</span> Chemical compound

Pedunculagin is an ellagitannin. It is formed from casuarictin via the loss of a gallate group.

Maximilian Nierenstein was a professor of biochemistry at the University of Bristol.

<span class="mw-page-title-main">Sanguisorbic acid</span> Chemical compound

Sanguisorbic acid is a constituent of some ellagitannins. It is constituted by a hexahydroxydiphenic acid unit linked by an O-C bond to a gallic acid. The differences with its isomers, valoneic acid and nonahydroxytriphenic acid, are that the hydroxyl that links the hexahydroxydiphenoyl (HHDP) group to the galloyl group belongs to the galloyl group in valoneic acid, while in nonahydroxytriphenic acid, the hexahydroxydiphenic acid unit is linked by a C-C bond to gallic acid.

<span class="mw-page-title-main">Urolithin</span> Group of chemical compounds

Urolithins are microflora metabolites of dietary ellagic acid derivatives, such as ellagitannins. They are produced in the gut, and found in the urine in the form of urolithin B glucuronide after absorption of ellagitannins-containing foods, such as pomegranate. During intestinal metabolism by bacteria, ellagitannins and punicalagins are converted to urolithins, which have unknown biological activity in vivo.

<span class="mw-page-title-main">Urolithin A</span> Chemical compound

Urolithin A is a metabolite compound resulting from the transformation of ellagitannins by the gut bacteria. It belongs to the class of organic compounds known as benzo-coumarins or dibenzo-α-pyrones. Its precursors – ellagic acids and ellagitannins – are ubiquitous in nature, including edible plants, such as pomegranates, strawberries, raspberries, walnuts, and others.

<span class="mw-page-title-main">Urolithin B</span> Chemical compound

Urolithin B (UB) is an urolithin, a type of phenolic compounds produced in the human gut after absorption of ellagitannins-containing food such as pomegranate, strawberries, red raspberries, walnuts or oak-aged red wine. Urolithin B is found in the urine in the form of urolithin B glucuronide.

<span class="mw-page-title-main">Tellimagrandin I</span> Chemical compound

Tellimagrandin I is an ellagitannin found in plants, such as Cornus canadensis, Eucalyptus globulus, Melaleuca styphelioides, Rosa rugosa, and walnut. It is composed of two galloyl and one hexahydroxydiphenyl groups bound to a glucose residue. It differs from Tellimagrandin II only by a hydroxyl group instead of a third galloyl group. It is also structurally similar to punigluconin and pedunculagin, two more ellagitannin monomers.

References

  1. Landete, J.M. (2011). "Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health". Food Research International. 44 (5): 1150–1160. doi:10.1016/j.foodres.2011.04.027.
  2. Structural diversity and antimicrobial activities of ellagitannins. T. Yoshida, Ts. Hatano, H. Ito, T. Okuda, S. Quideau (Ed.), Chemistry and Biology of Ellagitannins, World Scientific Publishing, Singapore (2009), pages 55–93
  3. Davis, CD; Milner, JA (Oct 2009). "Gastrointestinal microflora, food components and colon cancer prevention". J Nutr Biochem. 20 (10): 743–52. doi:10.1016/j.jnutbio.2009.06.001. PMC   2743755 . PMID   19716282.
  4. Yoshida, Takashi (2010). "Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales". International Journal of Molecular Sciences. 11 (1): 79–106. doi: 10.3390/ijms11010079 . PMC   2820991 . PMID   20162003.
  5. Gómez-Caravaca, A. M.; Verardo, V; Toselli, M; Segura-Carretero, A; Fernández-Gutiérrez, A; Caboni, M. F. (2013). "Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS". Journal of Agricultural and Food Chemistry. 61 (22): 5328–37. doi:10.1021/jf400684n. PMID   23656584.

Further reading