Acutissimin A

Last updated
Acutissimin A
Acutissimin A.png
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C56H38O31/c57-15-2-1-10(3-17(15)59)47-22(64)4-11-16(58)8-18(60)27(48(11)84-47)32-31-34-30(43(73)46(76)44(31)74)29-33-28(41(71)45(75)42(29)72)26-14(7-21(63)37(67)40(26)70)53(78)83-23-9-82-52(77)12-5-19(61)35(65)38(68)24(12)25-13(6-20(62)36(66)39(25)69)54(79)85-49(23)51(87-56(33)81)50(32)86-55(34)80/h1-3,5-8,22-23,32,47,49-51,57-76H,4,9H2/t22-,23+,32+,47+,49+,50-,51-/m0/s1 Yes check.svgY
    Key: DRHVFLXLYQESEQ-DHGKJAGISA-N Yes check.svgY
  • InChI=1/C56H38O31/c57-15-2-1-10(3-17(15)59)47-22(64)4-11-16(58)8-18(60)27(48(11)84-47)32-31-34-30(43(73)46(76)44(31)74)29-33-28(41(71)45(75)42(29)72)26-14(7-21(63)37(67)40(26)70)53(78)83-23-9-82-52(77)12-5-19(61)35(65)38(68)24(12)25-13(6-20(62)36(66)39(25)69)54(79)85-49(23)51(87-56(33)81)50(32)86-55(34)80/h1-3,5-8,22-23,32,47,49-51,57-76H,4,9H2/t22-,23+,32+,47+,49+,50-,51-/m0/s1
    Key: DRHVFLXLYQESEQ-DHGKJAGIBL
  • OC1=C(C2=C(O)C(O)=C(O)C=C2C(O[C@@H]([C@H](OC3=O)[C@@H](O4)[C@@H](C5=C(O)C=C(O)C6=C5O[C@H](C7=CC=C(O)C(O)=C7)[C@@H](O)C6)C8=C(O)C(O)=C(O)C(C9=C3C%10=C(O)C(O)=C9O)=C8C4=O)[C@H](OC(C%11=C%10C(O)=C(O)C(O)=C%11)=O)COC%12=O)=O)C%12=CC(O)=C1O
Properties
C56H38O31
Molar mass 1206.88 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Acutissimin A is a flavono-ellagitannin, a type of tannin formed from the linking of a flavonoid with an ellagitannin.

In 2003, scientists at Institut Européen de Chimie et Biologie in Pessac, France found that when the oak tannin vescalagin interacts with a flavanoid in wine acutissimin A is created. In separate studies this phenolic compound has been shown to be 250 times more effective than the pharmaceutical drug Etoposide in stopping the growth of cancerous tumors. [1] [2] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Tannin</span> Class of astringent, bitter plant polyphenolic chemical compounds

Tannins are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Punicalagin</span> Chemical compound

Punicalagin (Pyuni-cala-jen) is an ellagitannin, a type of phenolic compound. It is found as alpha and beta isomers in pomegranates, Terminalia catappa, Terminalia myriocarpa, and in Combretum molle, the velvet bushwillow, a plant species found in South Africa. These three genera are all Myrtales and the last two are both Combretaceae.

<i>Tellima</i> Genus of flowering plants in the family Saxifragaceae

Tellima grandiflora, the bigflower tellima or fringecups, is a herbaceous perennial flowering plant in the family Saxifragaceae. It is the only species in the genus Tellima.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Halomon</span> Chemical compound

Halomon is a polyhalogenated monoterpene first isolated from the marine red algae Portieria hornemannii. Halomon has attracted research interest because of its promising profile of selective cytotoxicity that suggests its potential use as an antitumor agent.

<span class="mw-page-title-main">Type II topoisomerase</span>

Type II topoisomerases are topoisomerases that cut both strands of the DNA helix simultaneously in order to manage DNA tangles and supercoils. They use the hydrolysis of ATP, unlike Type I topoisomerase. In this process, these enzymes change the linking number of circular DNA by ±2. Topoisomerases are ubiquitous enzymes, found in all living organisms.

<span class="mw-page-title-main">Camptothecin</span> Chemical compound

Camptothecin (CPT) is a topoisomerase inhibitor. It was discovered in 1966 by M. E. Wall and M. C. Wani in systematic screening of natural products for anticancer drugs. It was isolated from the bark and stem of Camptotheca acuminata, a tree native to China used in traditional Chinese medicine. It has been used clinically more recently in China for the treatment of gastrointestinal tumors. CPT showed anticancer activity in preliminary clinical trials, especially against breast, ovarian, colon, lung, and stomach cancers. However, it has low solubility and adverse effects have been reported when used therapeutically, so synthetic and medicinal chemists have developed numerous syntheses of camptothecin and various derivatives to increase the benefits of the chemical, with good results. Four CPT analogues have been approved and are used in cancer chemotherapy today: topotecan, irinotecan, belotecan, and trastuzumab deruxtecan. Camptothecin has also been found in other plants including Chonemorpha fragrans.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Indolocarbazole</span> Class of chemical compounds

Indolocarbazoles (ICZs) are a class of compounds that are under current study due to their potential as anti-cancer drugs and the prospective number of derivatives and uses found from the basic backbone alone. First isolated in 1977, a wide range of structures and derivatives have been found or developed throughout the world. Due to the extensive number of structures available, this review will focus on the more important groups here while covering their occurrence, biological activity, biosynthesis, and laboratory synthesis.

<span class="mw-page-title-main">Castalagin</span> Chemical compound

Castalagin is an ellagitannin, a type of hydrolyzable tannin, found in oak and chestnut wood and in the stem barks of Anogeissus leiocarpus and Terminalia avicennoides.

The ellagitannins are a diverse class of hydrolyzable tannins, a type of polyphenol formed primarily from the oxidative linkage of galloyl groups in 1,2,3,4,6-pentagalloyl glucose. Ellagitannins differ from gallotannins, in that their galloyl groups are linked through C-C bonds, whereas the galloyl groups in gallotannins are linked by depside bonds.

<span class="mw-page-title-main">Grandinin</span> Chemical compound

Grandinin is an ellagitannin. It can be found in Melaleuca quinquenervia leaves and in oaks species like the North American white oak and European red oak. It shows antioxydant activity. It is an astringent compound. It is also found in wine, red or white, aged in oak barrels.

The Flavono-ellagitannins or complex tannins are a class of tannins formed from the complexation of an ellagitannin with a flavonoid. Flavono-ellagitannins can be found in Quercus mongolica var. grosseserrata.

The duocarmycins are members of a series of related natural products first isolated from Streptomyces bacteria in 1978. They are notable for their extreme cytotoxicity and thus represent a class of exceptionally potent antitumour antibiotics.

<span class="mw-page-title-main">Lambertianin C</span> Chemical compound

Lambertianin C is an ellagitannin.

<span class="mw-page-title-main">Sanguiin H-6</span> Chemical compound

Sanguiin H-6 is an ellagitannin.

<span class="mw-page-title-main">Distamycin</span> Chemical compound

Distamycin is a polyamide-antibiotic, which acts as a minor groove binder, binding to the small furrow of the double helix.

<span class="mw-page-title-main">Tellimagrandin I</span> Chemical compound

Tellimagrandin I is an ellagitannin found in plants, such as Cornus canadensis, Eucalyptus globulus, Melaleuca styphelioides, Rosa rugosa, and walnut. It is composed of two galloyl and one hexahydroxydiphenyl groups bound to a glucose residue. It differs from Tellimagrandin II only by a hydroxyl group instead of a third galloyl group. It is also structurally similar to punigluconin and pedunculagin, two more ellagitannin monomers.

The Fiesselmann thiophene synthesis is a name reaction in organic chemistry that allows for the generation of 3-hydroxy-2-thiophenecarboxylic acid derivatives from α,β-acetylenic esters with thioglycolic acid and its derivatives under the presence of a base. The reaction was developed by Hans Fiesselmann in the 1950s.

References

  1. Quideau S, Jourdes M, Saucier C, Glories Y, Pardon P, Baudry C (December 2003). "DNA topoisomerase inhibitor acutissimin a and other flavano-ellagitannins in red wine". Angewandte Chemie. 42 (48): 6012–4. doi: 10.1002/anie.200352089 . PMID   14679557.
  2. Kashiwada Y, Nonaka G, Nishioka I, Chang JJ, Lee KH (August 1992). "Antitumor agents, 129. Tannins and related compounds as selective cytotoxic agents". Journal of Natural Products. 55 (8): 1033–43. doi:10.1021/np50086a002. PMID   1431932.
  3. Quideau S, Jourdes M, Saucier C, Glories Y, Pardon P, Baudry C (2003). "DNA Topoisomerase Inhibitor Acutissimin A and Other Flavano-Ellagitannins in Red Wine". Angewandte Chemie. 115 (48): 6194–6. Bibcode:2003AngCh.115.6194Q. doi:10.1002/ange.200352089. While it would be quite inappropriate to infer from the presence of acutissimin A in red wine that this beverage possesses antitumor properties, our work shows for the first time that wine contains polyphenolic molecules displaying both ellagitannin and flavanoid structural features.