Clinical data | |
---|---|
Trade names | Copaxone, [1] Glatopa, [2] Brabio |
AHFS/Drugs.com | Monograph |
MedlinePlus | a603016 |
License data |
|
Pregnancy category |
|
Routes of administration | Subcutaneous injection |
ATC code | |
Legal status | |
Legal status | |
Identifiers | |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider |
|
UNII | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.248.824 |
Chemical and physical data | |
Formula | C25H45N5O13 |
Molar mass | 623.657 g·mol−1 |
(what is this?) (verify) |
Glatiramer acetate (also known as Copolymer 1, Cop-1), sold under the brand name Copaxone among others, is an immunomodulator medication used to treat multiple sclerosis. [1] [2] Glatiramer acetate is approved in the United States to reduce the frequency of relapses, but not for reducing the progression of disability. Observational studies, but not randomized controlled trials, suggest that it may reduce progression of disability. While a conclusive diagnosis of multiple sclerosis requires a history of two or more episodes of symptoms and signs, glatiramer acetate is approved to treat a first episode anticipating a diagnosis. It is also used to treat relapsing-remitting multiple sclerosis. It is administered by subcutaneous injection. [1] [2]
It is a mixture of random-sized peptides that are composed of the four amino acids found in myelin basic protein, namely glutamic acid, lysine, alanine, and tyrosine. Myelin basic protein is the antigen in the myelin sheaths of the neurons that stimulates an autoimmune reaction in people with MS, so the peptide may work as a decoy for the attacking immune cells.
It is on the World Health Organization's List of Essential Medicines. [6]
Glatiramer acetate was originally discovered at the Weizmann Institute of Science. Three main clinical trials followed to demonstrate safety and efficacy: The first trial was performed in a single center, double-blind, placebo controlled trial and included 50 patients. [7] The second trial was a two-year, multi-center, randomized, double-blind, placebo controlled trial and involved 251 patients. [8] The third trial was a double-blind MRI study involving participation of 239 patients. [9]
Glatiramer acetate is indicated for the treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults. [1]
A 2010 Cochrane review concluded that glatiramer acetate had partial efficacy in "relapse-related clinical outcomes" but no effect on progression of the disease. [10] As a result, it is approved by the FDA for reducing the frequency of relapses, but not for reducing the progression of disability. [1] [2]
A 15-year followup of the original trial compared patients who continued with glatiramer to patients who dropped out of the trial. Patients with glatiramer had reduced relapse rates, and decreased disability progression and transition to secondary progressive MS, compared to patients who did not continue glatiramer. However, the two groups were not necessarily comparable, as it was no longer a randomized trial. There were no long-term safety issues. [11]
Side effects may include a lump at the injection site (injection site reaction) in approximately 30% of users, and aches, fever, chills (flu-like symptoms) in approximately 10% of users. [12] Side effect symptoms are generally mild in nature. A reaction that involves flushing, shortness of breath, anxiety and rapid heartbeat has been reported soon after injection in up to 5% of patients (usually after inadvertently injecting directly into a vein). These side effects subside within thirty minutes. Over time, a visible dent at a repeat-injection site can occur due to the local destruction of fat tissue, known as lipoatrophy, that may develop.
More serious side effects have been reported for glatiramer acetate, according to the FDA's prescribing label, these include serious side effects to the cardiovascular, digestive (including the liver), hematopoietic, lymphatic, musculoskeletal, nervous, respiratory, and urogenital systems as well as special senses (in particular the eyes). Metabolic and nutritional disorders have also been reported; however a link between glatiramer acetate and these adverse effects has not been established. [1] [2]
It may also cause Jessner lymphocytic infiltrate. [13]
Glatiramer acetate is a random polymer (average molecular mass 6.4 kDa ) composed of four amino acids found in myelin basic protein. The mechanism of action for glatiramer acetate is not fully elucidated. It is thought to act by modifying immune processes that are believed to be responsible for the pathogenesis of MS. Administration of glatiramer acetate shifts the population of T cells from proinflammatory Th1 T-cells to regulatory Th2 T-cells that suppress the inflammatory response. [14] This is done by the inhibition of secretion of proinflammatory cytokines (IL-1, IL-12, TNF, INFγ) by Th1 T-cells, thereby inducing Th2 T-cells to cross the blood–brain barrier and produce anti-inflammatory cytokines (IL-4, IL-5, IL-13, IL-10, TGF-β). [15] Given its resemblance to myelin basic protein, glatiramer acetate may act as a decoy, diverting an autoimmune response against myelin. This hypothesis is supported by findings of studies that have been carried out to explore the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a condition induced in several animal species through immunization against central nervous system derived material containing myelin and often used as an experimental animal model of MS. Studies in animals and in vitro systems suggest that upon its administration, glatiramer acetate-specific regulatory T cells (Tregs) are induced and activated in the periphery, inhibiting the inflammatory reaction to myelin basic protein. [1] [2]
The integrity of the blood–brain barrier, however, is not appreciably affected by glatiramer acetate, at least not in the early stages of treatment. Glatiramer acetate has been shown in clinical trials to reduce the number and severity of multiple sclerosis exacerbations. [16]
Glatiramer acetate has been approved for marketing in numerous countries worldwide, including the United States, Israel, Canada and 24 European Union countries. [17] [18] Approval in the U.S. was obtained in 1997. [19] Glatiramer acetate was approved for marketing in the U.K. in August 2000, and launched in December. [20] This first approval in a major European market led to approval across the European Union under the mutual recognition procedure. Iran is proceeding with domestic manufacture of glatiramer acetate. [21] [22]
Novartis subsidiary Sandoz has marketed Glatopa since 2015, a generic version of the original Teva 20 mg formulation that requires daily injection. [23]
Teva developed a long-acting 40 mg formulation, marketed since 2015, which reduced required injections to three per week. [24] In October 2017, the FDA approved a generic version, which is manufactured in India by Natco Pharma, and imported and sold by Dutch firm Mylan. [25] [26] In February 2018, Sandoz received FDA approval for their generic version. [27] In parallel with the development and approval processes, the generic competitors have disputed Teva's newer patents, any of which if upheld, would prevent marketing of long-acting generics. [28]
While the patent on the chemical drug expired in 2015, [29] Teva obtained new US patents covering pharmaceutical formulations for long-acting delivery. [30] Litigation from industry competitors in 2016-2017 resulted in the new patents being judged invalid. [31] [32] In October 2018, the U.S. Court of Appeals for the Federal Circuit upheld the patent invalidation for obviousness. [33] [34] The case reflects the larger controversy over evergreening of branded drugs. On October 31, 2024, the European Commission fined Teva €462.6 million «over misuse of the patent system and disparagement to delay rival multiple sclerosis medicine», having attempted to obstacle other producers of glatiramer acetate both by abusing the patent system and by setting up a misinformation campaign targeting other glatiramer producers. [35]
Multiple sclerosis (MS) is an autoimmune disease resulting in damage to the insulating covers of nerve cells in the brain and spinal cord. As a demyelinating disease, MS disrupts the nervous system's ability to transmit signals, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Symptoms include double vision, vision loss, eye pain, muscle weakness, and loss of sensation or coordination. MS takes several forms, with new symptoms either occurring in isolated attacks or building up over time. In relapsing forms of MS symptoms may disappear completely between attacks, although some permanent neurological problems often remain, especially as the disease advances. In progressive forms of MS, bodily function slowly deteriorates once symptoms manifest and will steadily worsen if left untreated.
Interferon beta-1a is a cytokine in the interferon family used to treat multiple sclerosis (MS). It is produced by mammalian cells, while interferon beta-1b is produced in modified E. coli. Some research indicates that interferon injections may result in an 18–38% reduction in the rate of MS relapses.
Daclizumab is a therapeutic humanized monoclonal antibody which was used for the treatment of adults with relapsing forms of multiple sclerosis (MS). Daclizumab works by binding to CD25, the alpha subunit of the IL-2 receptor of T-cells.
Rituximab, sold under the brand name Rituxan among others, is a monoclonal antibody medication used to treat certain autoimmune diseases and types of cancer. It is used for non-Hodgkin lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis, granulomatosis with polyangiitis, idiopathic thrombocytopenic purpura, pemphigus vulgaris, myasthenia gravis and Epstein–Barr virus-positive mucocutaneous ulcers. It is given by slow intravenous infusion.
Fingolimod, sold under the brand name Gilenya, is an immunomodulating medication, used for the treatment of multiple sclerosis. Fingolimod is a sphingosine-1-phosphate receptor modulator, which sequesters lymphocytes in lymph nodes, preventing them from contributing to an autoimmune reaction. It has been reported to reduce the rate of relapses in relapsing-remitting multiple sclerosis by approximately one-half over a two-year period.
Natalizumab, sold under the brand name Tysabri among others, is a medication used to treat multiple sclerosis and Crohn's disease. It is a humanized monoclonal antibody against the cell adhesion molecule α4-integrin. It is given by intravenous infusion. The drug is believed to work by reducing the ability of inflammatory immune cells to attach to and pass through the cell layers lining the intestines and blood–brain barrier.
Interferon beta-1b is a cytokine in the interferon family used to treat the relapsing-remitting and secondary-progressive forms of multiple sclerosis (MS). It is approved for use after the first MS event. Closely related is interferon beta 1a, also indicated for MS, with a very similar drug profile.
Cladribine, sold under the brand name Leustatin, among others, is a medication used to treat hairy cell leukemia and B-cell chronic lymphocytic leukemia. Cladribine, sold under the brand name Mavenclad, is used for the treatment of adults with highly active forms of relapsing-remitting multiple sclerosis.
Alemtuzumab, sold under the brand names Campath and Lemtrada among others, is a medication used to treat chronic lymphocytic leukemia and multiple sclerosis. In chronic lymphocytic leukemia, it has been used as both a first line and second line treatment. It is given by injection into a vein.
Ruth Arnon is an Israeli biochemist and codeveloper of the multiple sclerosis drug Copaxone. She is currently the Paul Ehrlich Professor of Immunology at the Weizmann Institute of Science, where she is researching anti-cancer and influenza vaccinations.
Teva Pharmaceutical Industries Ltd. is an Israeli multinational pharmaceutical company. Teva specializes primarily in generic drugs, but other business interests include branded-drugs, active pharmaceutical ingredients (APIs) and, to a lesser extent, contract manufacturing services and an out-licensing platform.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system (CNS). Several therapies for it exist, although there is no known cure.
Ocrelizumab, sold under the brand name Ocrevus, is a medication used for the treatment of multiple sclerosis. It is a humanized anti-CD20 monoclonal antibody. It targets CD20 marker on B lymphocytes and is an immunosuppressive drug. Ocrelizumab binds to an epitope that overlaps with the epitope to which rituximab binds. It is administered by intravenous infusion. The fixed-dose combination ocrelizumab/hyaluronidase is administered by subcutaneous injection.
Laquinimod is an experimental immunomodulator developed by Active Biotech and Teva. It is being investigated as an oral treatment for multiple sclerosis (MS) and Huntington's disease.
Dirucotide (also known as MBP8298) was developed by two research scientists (Dr. Kenneth G. Warren, MD, FRCP(C) & Ingrid Catz, Senior Scientist) at the University of Alberta for the treatment of Multiple Sclerosis (MS). Dirucotide is a synthetic peptide that consists of 17 amino acids linked in a sequence identical to that of a portion of human myelin basic protein (MBP). The sequence of these 17 amino acids is
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid and is named after the earth smoke plant. Dimethyl fumarate combined with three other fumaric acid esters (FAEs) is solely licensed in Germany as an oral therapy for psoriasis. Since 2013, it has been approved by the U.S. Food and Drug Administration (FDA) as a treatment option for adults with relapsing multiple sclerosis. In 2017, an oral formulation of dimethyl fumarate was approved for medical use in the European Union as a treatment for moderate-to-severe plaque psoriasis. Dimethyl fumarate is thought to have immunomodulatory properties without causing significant immunosuppression.
Hydrocodone/ibuprofen (INNs), sold under the brand name Vicoprofen, is a fixed-dose combination analgesic medication used in short-term therapy to relieve severe pain. Vicoprofen combines the analgesic and antitussive properties of hydrocodone with the analgesic, anti-inflammatory, and antipyretic properties of ibuprofen. In contrast to hydrocodone/acetaminophen combination analgesics such as Vicodin, this hydrocodone/ibuprofen avoids some of the liver toxicity which may occur from acetaminophen, but still presents significant dangers in hydrocodone overdose, namely respiratory depression. Vicoprofen is supplied in a fixed dose combination tablet which contains hydrocodone bitartrate, USP 7.5 mg with ibuprofen, USP 200 mg. Additional strengths of generic Vicoprofen are now available, in combinations of 5 mg/200 mg and 10 mg/200 mg respectively.
Ozanimod, sold under the brand name Zeposia, is an immunomodulatory medication for the treatment of relapsing multiple sclerosis and ulcerative colitis. It acts as a sphingosine-1-phosphate receptor (S1PR) agonist, sequestering lymphocytes to peripheral lymphoid organs and away from their sites of chronic inflammation.
Siponimod, sold under the brand name Mayzent, is a selective sphingosine-1-phosphate receptor modulator for oral use that is used for multiple sclerosis (MS). It is intended for once-daily oral administration.
There are several ways for pharmaceuticals for treating multiple sclerosis (MS) to reach the market.