Chronic inflammatory demyelinating polyneuropathy

Last updated
Chronic inflammatory demyelinating polyneuropathy
Other namesCIDP, chronic relapsing polyneuropathy, chronic inflammatory demyelinating polyradiculoneuropathy
CIDP Histopathology Teased fibre.jpg
Histopathology of Chronic inflammatory demyelinating polyneuropathy. Teased single fiber with segmental demyelination.
Specialty Neurology

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired autoimmune disease of the peripheral nervous system characterized by progressive weakness and impaired sensory function in the legs and arms. [1] The disorder is sometimes called chronic relapsing polyneuropathy (CRP) or chronic inflammatory demyelinating polyradiculoneuropathy (because it involves the nerve roots). [2] CIDP is closely related to Guillain–Barré syndrome and it is considered the chronic counterpart of that acute disease. [3] Its symptoms are also similar to progressive inflammatory neuropathy. It is one of several types of neuropathy.

Contents

Signs and symptoms

In its traditional manifestation, chronic inflammatory demyelinating polyneuropathy is characterized by symmetric, progressive limb weakness and sensory loss, which typically starts in the legs. Patients report having trouble getting out of a chair, walking, climbing stairs, and falling. Problems with gripping objects, tying shoe laces, and using utensils can all be brought on by upper limb involvement. Proximal limb weakness is a fundamental clinical characteristic that sets apart chronic inflammatory demyelinating polyneuropathy from the vast majority of distal polyneuropathies, which are far more common. Proprioception impairment, distal paresthesias, loss of feeling, and poor balance are all brought on by sensory involvement. Only a small percentage of cases involve neuropathic pain. [4]

Fatigue has been identified as common in CIDP patients, but it is unclear how much this is due to primary (due to the disease action on the body) or secondary effects (impacts on the whole person of being ill with CIDP). [5] [6] [7]

Numerous reports have outlined a range of clinical patterns that are thought to be chronic inflammatory demyelinating polyneuropathy variations. Different variations include ataxic, pure motor, and pure sensory patterns; additionally, there are multifocal patterns in which the distributions of specific nerve territories experience weakness and sensory loss. [4]

Causes

Structure of a typical neuron with Schwann cells in the peripheral nervous system Neuron.svg
Structure of a typical neuron with Schwann cells in the peripheral nervous system

Chronic inflammatory demyelinating polyneuropathy (or polyradiculoneuropathy) is considered an autoimmune disorder destroying myelin, the protective covering of the nerves. Typical early symptoms are "tingling" (sort of electrified vibration or paresthesia) or numbness in the extremities, frequent (night) leg cramps, loss of reflexes (in knees), muscle fasciculations, "vibration" feelings, loss of balance, general muscle cramping and nerve pain. [8] [9] CIDP is extremely rare but under-recognized and under-treated due to its heterogeneous presentation (both clinical and electrophysiological) and the limitations of clinical, serologic, and electrophysiologic diagnostic criteria. Despite these limitations, early diagnosis and treatment is favoured in preventing irreversible axonal loss and improving functional recovery. [10]

There is a lack of awareness and treatment of CIDP. Although there are stringent research criteria for selecting patients for clinical trials, there are no generally agreed-upon clinical diagnostic criteria for CIDP due to its different presentations in symptoms and objective data. Application of the present research criteria to routine clinical practice often misses the diagnosis in a majority of patients, and patients are often left untreated despite progression of their disease. [11]

Risk factors

HIV infection is a factor in the occurrence of CIDP. At every stage of HIV infection, distinct patterns of CIDP, whether progressive or relapsing, have been noted. Increased protein content is linked to CSF pleocytosis in the majority of HIV-CIDP cases. [12] Pregnancy has been linked to a significantly greater risk of relapse. [13]

Triggers

In one study, 32% of 92 CIDP patients had a history of infection within 6 weeks of the onset of neurological symptoms, with the majority of these infections being non-specific upper respiratory tract or gastrointestinal infections. [13] A different study showed that out of 100 patients, 16% had an infectious event six weeks or less prior to the onset of neurological symptoms: seven patients had CIDP that was related to or followed viral hepatitis, and six had a chronic infection with the hepatitis B virus. The other nine patients had vague symptoms similar to the flu. [14]

Genetics

There is no known genetic predisposition to chronic inflammatory demyelinating polyneuropathy. [15]

Variants with paranodal autoantibodies

Some variants of CIDP present autoimmunity against proteins of the node of Ranvier. These variants comprise a subgroup of inflammatory neuropathies with IgG4 autoantibodies against the paranodal proteins neurofascin-155, contactin-1 and caspr-1. [16]

These cases are special not only because of their pathology, but also because they are non-responsive to the standard treatment. They are responsive to Rituximab instead. [16]

Also some cases of combined central and peripheral demyelination (CCPD) could be produced by neurofascins. [17]

Autoantibodies of the IgG3 Subclass in CIDP

Autoantibodies to components of the Ranvier nodes, specially autoantibodies the Contactin-associated protein 1 (CASPR), cause a form of CIDP with an acute "Guillain-Barre-like" phase, followed by a chronic phase with progressive symptoms. Different IgG subclasses are associated with the different phases of the disease. IgG3 Caspr autoantibodies were found during the acute GBS-like phase, while IgG4 Caspr autoantibodies were present during the chronic phase of disease. [18]

Mechanism

In the local tissue compartment of peripheral nerves, the immune system is carefully regulated by a normal, balanced collection of immunocompetent cells as well as soluble factors, maintaining the integrity of the system. Maintaining self-tolerance requires defense against immune reactions to autoantigens. Chronic inflammatory demyelinating polyneuropathy disrupts self-tolerance and activates autoreactive T and B cells, which are normally suppressed immune cells. This leads to the organ-specific damage typical of autoimmune disease. [19] Molecular mimicry may be particularly relevant to the tolerance breakdown linked to autoimmune neuropathies. The process known as "molecular mimicry" occurs when an infectious organism that shares epitopes from its host's afflicted tissue triggers an immune response in the host. However, only a small number of convincingly identified specific targets for such a response have been found in chronic inflammatory demyelinating polyneuropathy. [20]

Individuals with chronic inflammatory demyelinating polyneuropathy have evidence of activation of T cells in the systemic immune compartment; however, antigen specificity is still largely unknown. [21] [22]

It was proposed more than 20 years ago that autoantibodies play a role in the development of chronic inflammatory demyelinating polyneuropathy. This was supported by the detection of oligoclonal IgG bands in the cerebrospinal fluid [23] and immunoglobulin as well as complement deposition on myelinated nerve fibers. [24]

Target antigens may also include gangliosides and related glycolipids. There is serologic evidence of recent Campylobacter jejuni infection in a small number of individuals with chronic inflammatory demyelinating polyneuropathy. Because carbohydrate epitopes are expressed in both microbial lipopolysaccharides and nerve glycolipids, this discovery may, in rare cases, point to molecular mimicry as the root cause of chronic inflammatory demyelinating polyneuropathy. [25]

Apart from myelin-directed antibodies, other serum components that can cause demyelination as well as conduction block include complement, cytokines, and other inflammatory mediators. Individuals with chronic inflammatory demyelinating polyneuropathy have a low frequency of specific antibodies, which suggests that different antibodies and different mechanisms are involved in each patient. [20]

Diagnosis

When a patient presents with a non-length-dependent demyelinating polyneuropathy which either develops chronically over several months or progresses over more than a month, CIDP may be diagnosed. There may be a secondary progressive course along with a progressive course that follows, or it may be relapsing and remitting. Pathological investigations and electrophysiological studies, if necessary, show the underlying demyelinating process. [26]

The primary basis for diagnosing CIDP is the electrophysiological studies that depict an asymmetric demyelinating process. Comparison of the proximal and distal latencies of equivalent segments of two nerves in the same limb reveals that these patients with acquired demyelinating neuropathy frequently have a differential slowing of conduction velocity. There is always a noticeable difference in the compound muscle action potential's dispersion, and conduction block is commonly experienced. [26]

An MRI can show proximal nerve or root enlargement and gadolinium enhancement, which indicate active inflammation as well as demyelination in the brachial plexus [27] or cauda equina. [28]

Classification

Clinically, CIDP is divided into "typical" and "atypical" cases. A typical case of CIDP is a symmetrical polyneuropathy that affects the proximal and distal muscles equally. Atypical cases of CIDP include multifocal acquired demyelinating sensory and motor neuropathy (MADSAM), Lewis-Sumner syndrome (LSS), and distal acquired demyelinating symmetric (DADS). DADS is a sensory or sensorimotor neuropathy that is symmetrical and length-dependent. It is frequently linked to an IgM paraprotein and noticeably longer distal motor latencies. The characteristics are typical of demyelinating neuropathy with antimyelin-associated glycoprotein (MAG) antibodies; however, anti-MAG neuropathy is not included in the CIDP criteria according to the EFNS/PNS criteria, primarily due to the presence of a particular antibody and a different response to treatment. LSS exhibits a multifocal distribution, with conduction block serving as the disease's electrophysiological hallmark. Furthermore, there have been reports of pure motor and sensory CIDP variants, with the latter occasionally limited to sensory nerve roots (chronic immune sensory polyradiculopathy). The acronym CANOMAD refers to a rare chronic ataxic neuropathy linked to disialosyl (ganglioside) antibodies, IgM paraprotein, ophthalmoplegia, and cold agglutinins. [29]

Differential diagnosis

CIDP variants are among several types of immune-mediated neuropathies recognised. [30] [31] These include:

Other possible diagnoses are

For this reason a diagnosis of chronic inflammatory demyelinating polyneuropathy needs further investigations. The diagnosis is usually provisionally made through a clinical neurological examination.

Tests

Typical diagnostic tests include:

In some cases electrophysiological studies fail to show any evidence of demyelination. Though conventional electrophysiological diagnostic criteria are not met, the patient may still respond to immunomodulatory treatments. In such cases, presence of clinical characteristics suggestive of CIDP are critical, justifying full investigations, including sural nerve biopsy. [37]

Treatment

First-line treatment for CIDP is currently intravenous immunoglobulin and other treatments include corticosteroids (e.g., prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. [38] Recent controlled studies show subcutaneous immunoglobulin appears to be as effective for CIDP treatment as intravenous immunoglobulin in most patients, and with fewer systemic side effects. [39]

Intravenous immunoglobulin and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. Intravenous immunoglobulin is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration.[ citation needed ]

Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. [40] Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.[ citation needed ]

Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used "off-label", meaning that they do not have an indication for the treatment of CIDP in their package inserts. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.[ citation needed ]

Anti-thymocyte globulin, an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody. Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.[ citation needed ]

A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. [41] Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment.[ citation needed ]

In severe cases of CIDP, when second-line immunomodulatory drugs are not efficient, autologous hematopoietic stem cell transplantation (HSCT) is sometimes performed. The treatment may induce long-term remission even in severe treatment-refractory cases of CIDP. To improve outcome, it has been suggested that it should be initiated before irreversible axonal damage has occurred. However, a precise estimation of its clinical efficacy for CIDP is not available, as randomized controlled trials (RCT) have not been performed. [42] (In MS, the ASTIMS RCT provides evidence for superior effect of HSCT to the then-best practice for treatment of aggressive MS. [42] The more recent MIST RCT confirmed its superiority in MS. [43] )

Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.[ citation needed ]

Ongoing specialist community support, information, advice, and guidance is available from a range of Charities, Non-Government Organisations (NGOs), and Patient Advisory Groups around the world. In the United Kingdom this is provided by GAIN (Guillain–Barré and Associated Inflammatory Neuropathies), [44] in the USA it is provided by GBS/CIDP Foundation International, [45] and in The European Union by a range of organisations under the umbrella of EPODIN (European Patient Organization for Disimmune & Inflammatory Neuropathies) [46]

Prognosis

As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.[ citation needed ]

If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life. [2]

It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.[ citation needed ]

Epidemiology

In 1982 Lewis et al. reported a group of patients with a chronic asymmetrical sensorimotor neuropathy mostly affecting the arms with multifocal involvement of peripheral nerves. [47] Also in 1982 Dyck et al reported a response to prednisolone to a condition they referred to as chronic inflammatory demyelinating polyradiculoneuropathy. [48] Parry and Clarke in 1988 described a neuropathy which was later found to be associated with IgM autoantibodies directed against GM1 gangliosides. [49] [50] This latter condition was later termed multifocal motor neuropathy [51] This distinction is important because multifocal motor neuropathy responds to intravenous immunoglobulin alone, while chronic inflammatory demyelinating polyneuropathy responds to intravenous immunoglobulin, steroids and plasma exchange. [52] It has been suggested that multifocal motor neuropathy is distinct from chronic inflammatory demyelinating polyneuropathy and that Lewis-Sumner syndrome is a distinct variant type of chronic inflammatory demyelinating polyneuropathy. [53]

The Lewis-Sumner form of this condition is considered a rare disease with only 50 cases reported up to 2004. [54] A total of 90 cases had been reported by 2009. [55]

Vaccine injury compensation for CIDP

The National Vaccine Injury Compensation Program has awarded money damages to patients who came down with CIDP after receiving one of the childhood vaccines listed on the Federal Government's vaccine injury table. These Vaccine Court awards often come with language stating that the Court denies that the specific vaccine "caused petitioner to suffer CIDP or any other injury. Nevertheless, the parties agree to the joint stipulation, attached hereto as Appendix A. The undersigned finds said stipulation reasonable and adopts it as the decision of the Court in awarding damages, on the terms set forth therein." [56] A keyword search on the Court of Federal Claims "Opinions/Orders" database for the term "CIDP" returns 202 opinions related to CIDP and vaccine injury compensation. [57]

See also

Related Research Articles

<span class="mw-page-title-main">Peripheral neuropathy</span> Nervous system disease affecting nerves beyond the brain and spinal cord

Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropathies affecting motor, sensory, or autonomic nerve fibers result in different symptoms. More than one type of fiber may be affected simultaneously. Peripheral neuropathy may be acute or chronic, and may be reversible or permanent.

<span class="mw-page-title-main">Demyelinating disease</span> Any neurological disease in which the myelin sheath of neurons is damaged

A demyelinating disease refers to any disease affecting the nervous system where the myelin sheath surrounding neurons is damaged. This damage disrupts the transmission of signals through the affected nerves, resulting in a decrease in their conduction ability. Consequently, this reduction in conduction can lead to deficiencies in sensation, movement, cognition, or other functions depending on the nerves affected.

<span class="mw-page-title-main">Polyneuropathy</span> Any disease affecting peripheral nerves on both sides of the body

Polyneuropathy is damage or disease affecting peripheral nerves in roughly the same areas on both sides of the body, featuring weakness, numbness, and burning pain. It usually begins in the hands and feet and may progress to the arms and legs and sometimes to other parts of the body where it may affect the autonomic nervous system. It may be acute or chronic. A number of different disorders may cause polyneuropathy, including diabetes and some types of Guillain–Barré syndrome.

<span class="mw-page-title-main">Alcoholic polyneuropathy</span> Medical condition

Alcoholic polyneuropathy is a neurological disorder in which peripheral nerves throughout the body malfunction simultaneously. It is defined by axonal degeneration in neurons of both the sensory and motor systems and initially occurs at the distal ends of the longest axons in the body. This nerve damage causes an individual to experience pain and motor weakness, first in the feet and hands and then progressing centrally. Alcoholic polyneuropathy is caused primarily by chronic alcoholism; however, vitamin deficiencies are also known to contribute to its development. This disease typically occurs in chronic alcoholics who have some sort of nutritional deficiency. Treatment may involve nutritional supplementation, pain management, and abstaining from alcohol.

<span class="mw-page-title-main">Neuritis</span> Inflammation of a nerve or generally any part of the nervous system

Neuritis, from the Greek νεῦρον), is inflammation of a nerve or the general inflammation of the peripheral nervous system. Inflammation, and frequently concomitant demyelination, cause impaired transmission of neural signals and leads to aberrant nerve function. Neuritis is often conflated with neuropathy, a broad term describing any disease process which affects the peripheral nervous system. However, neuropathies may be due to either inflammatory or non-inflammatory causes, and the term encompasses any form of damage, degeneration, or dysfunction, while neuritis refers specifically to the inflammatory process.

<span class="mw-page-title-main">Nerve conduction velocity</span> Speed at which an electrochemical impulse propagates down a neural pathway

In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway. Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions. Studies allow for better diagnoses of various neuropathies, especially demyelinating diseases as these conditions result in reduced or non-existent conduction velocities. CV is an important aspect of nerve conduction studies.

A paraneoplastic syndrome is a syndrome that is the consequence of a tumor in the body. It is specifically due to the production of chemical signaling molecules by tumor cells or by an immune response against the tumor. Unlike a mass effect, it is not due to the local presence of cancer cells.

Guillain–Barré syndrome (GBS) is a rapid-onset muscle weakness caused by the immune system damaging the peripheral nervous system. Typically, both sides of the body are involved, and the initial symptoms are changes in sensation or pain often in the back along with muscle weakness, beginning in the feet and hands, often spreading to the arms and upper body. The symptoms may develop over hours to a few weeks. During the acute phase, the disorder can be life-threatening, with about 15% of people developing weakness of the breathing muscles requiring mechanical ventilation. Some are affected by changes in the function of the autonomic nervous system, which can lead to dangerous abnormalities in heart rate and blood pressure.

Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barré syndrome. It is characterized by acute paralysis and loss of reflexes without sensory loss. Pathologically, there is motor axonal degeneration with antibody-mediated attacks of motor nerves and nodes of Ranvier.

Antiganglioside antibodies that react to self-gangliosides are found in autoimmune neuropathies. These antibodies were first found to react with cerebellar cells. These antibodies show highest association with certain forms of Guillain–Barré syndrome.

Critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are overlapping syndromes of diffuse, symmetric, flaccid muscle weakness occurring in critically ill patients and involving all extremities and the diaphragm with relative sparing of the cranial nerves. CIP and CIM have similar symptoms and presentations and are often distinguished largely on the basis of specialized electrophysiologic testing or muscle and nerve biopsy. The causes of CIP and CIM are unknown, though they are thought to be a possible neurological manifestation of systemic inflammatory response syndrome. Corticosteroids and neuromuscular blocking agents, which are widely used in intensive care, may contribute to the development of CIP and CIM, as may elevations in blood sugar, which frequently occur in critically ill patients.

Progressive inflammatory neuropathy is a autoimmune disease that was identified in a report, released on January 31, 2008, by the Centers for Disease Control and Prevention. The first known outbreak of this neuropathy occurred in southeastern Minnesota in the United States. The disease was reported among slaughterhouse workers who appeared at various care facilities in the area reporting similar neurological symptoms. The disease was later identified at slaughterhouses in Indiana and Nebraska as well. The condition is characterized by acute paralysis, pain, fatigue, numbness, and weakness, especially in extremities. It was initially believed that workers might have contracted the disease through inhaling aerosols from pig brains that were created by a machine at the slaughterhouse and that an autoimmune response to the particles might have produced their mysterious peripheral neuropathy. These suspicions were confirmed in reports and investigations conducted at the Mayo Clinic in Rochester, Minnesota.

<span class="mw-page-title-main">Hereditary motor and sensory neuropathy</span> Medical condition

Hereditary motor and sensory neuropathies (HMSN) is a name sometimes given to a group of different neuropathies which are all characterized by their impact upon both afferent and efferent neural communication. HMSN are characterised by atypical neural development and degradation of neural tissue. The two common forms of HMSN are either hypertrophic demyelinated nerves or complete atrophy of neural tissue. Hypertrophic condition causes neural stiffness and a demyelination of nerves in the peripheral nervous system, and atrophy causes the breakdown of axons and neural cell bodies. In these disorders, a patient experiences progressive muscle atrophy and sensory neuropathy of the extremities.

John David Pollard, FRACP, FRCP (Lond), AO, born 6 January 1941, is professor of neurology at the University of Sydney, Australia. He attended Sydney Boys High School from 1953 to 1958. After graduating with honours in a Bachelor of Science (medical) from the University of Sydney in 1964, he went on to study medicine at the same institution, graduating with honours in 1966 and completing a PhD studying nerve transplantation in 1973. He trained in neurology at Royal Prince Alfred Hospital, Sydney, and subsequently as research fellow and registrar at the Royal Free Hospital and the National Hospital for Neurology and Neurosurgery, Queen Square, London.

Anti-MAG peripheral neuropathy is a specific type of peripheral neuropathy in which the person's own immune system attacks cells that are specific in maintaining a healthy nervous system. As these cells are destroyed by antibodies, the nerve cells in the surrounding region begin to lose function and create many problems in both sensory and motor function. Specifically, antibodies against myelin-associated glycoprotein (MAG) damage Schwann cells. While the disorder occurs in only 10% of those afflicted with peripheral neuropathy, people afflicted have symptoms such as muscle weakness, sensory problems, and other motor deficits usually starting in the form of a tremor of the hands or trouble walking. There are, however, multiple treatments that range from simple exercises in order to build strength to targeted drug treatments that have been shown to improve function in people with this type of peripheral neuropathy.

Multifocal motor neuropathy (MMN) is a progressively worsening condition where muscles in the extremities gradually weaken. The disorder, a pure motor neuropathy syndrome, is sometimes mistaken for amyotrophic lateral sclerosis (ALS) because of the similarity in the clinical picture, especially if muscle fasciculations are present. MMN is thought to be autoimmune. It was first described in the mid-1980s.

MOG antibody disease (MOGAD) or MOG antibody-associated encephalomyelitis (MOG-EM) is an inflammatory demyelinating disease of the central nervous system. Serum anti-myelin oligodendrocyte glycoprotein antibodies are present in up to half of patients with an acquired demyelinating syndrome and have been described in association with a range of phenotypic presentations, including acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, and neuromyelitis optica.

Anti-neurofascin demyelinating diseases refers to health conditions engendered by auto-antibodies against neurofascins, which can produce both central and peripheral demyelination. Some cases of combined central and peripheral demyelination (CCPD) could be produced by them.

<span class="mw-page-title-main">Shin Joong Oh</span>

Shin Joong Oh is a South Korean and American physician who is Distinguished Professor of Neurology Emeritus at The University of Alabama at Birmingham in the United States. Oh is a clinician, researcher, and educator known for his contributions to the fields of neurology and electrodiagnostic medicine, particularly electromyography. He retired in 2014.

<span class="mw-page-title-main">Sensory neuronopathy</span> Sensory neuropathy caused by damage of nerve cells in the dorsal root ganglion

Sensory neuronopathy is a type of peripheral neuropathy that results primarily in sensory symptoms due to destruction of nerve cell bodies in the dorsal root ganglion. The causes of nerve damage are grouped into categories including those due to paraneoplastic causes, immune mediated, infectious, inherited or degenerative causes and those due to toxin exposure. In idiopathic sensory neuronopathy no cause is identified. Idiopathic causes account for about 50% of cases. Sensory neuronopathy differs from the more common length dependent axonal polyneuropathies in that the symptoms do not progress in a distal to proximal pattern, rather symptoms develop in a multifocal, asymmetric, and non-length dependent manner. Ataxia is a prominent symptom early in the disease course. The trigeminal nerve ganglion is also commonly affected leading to facial numbness. Motor nerves are usually not affected however some cases do have mild motor involvement in the form of weakness. Symptoms tend to develop sub-acutely, over weeks, in acquired sensory neuronopathy and more slowly in inherited or primary degenerative cases. In cases of paraneoplastic or infectious sensory neuropathy, treatment is directed at the underlying cancer or infectious cause respectively. Immunomodulatory and anti-inflammatory therapies are also commonly used however their effectiveness is limited.

References

  1. "Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) Information Page". ninds.nih.gov. Archived from the original on 2020-12-19. Retrieved 2020-12-31.
  2. 1 2 Kissel JT (2003). "The treatment of chronic inflammatory demyelinating polyradiculoneuropathy". Seminars in Neurology. 23 (2): 169–80. doi:10.1055/s-2003-41130. PMID   12894382. S2CID   20396024.
  3. "GBS (Guillain-Barré Syndrome) - CIDP Neuropathy". cidpneuropathysupport.com. Retrieved 2017-12-14.
  4. 1 2 Gorson, Kenneth C.; Katz, Jonathan (2013). "Chronic Inflammatory Demyelinating Polyneuropathy". Neurologic Clinics. 31 (2). Elsevier BV: 511–532. doi:10.1016/j.ncl.2013.01.006. ISSN   0733-8619. PMID   23642722.
  5. Gable, Karissa L.; Attarian, Hrayr; Allen, Jeffrey A. (December 2020). "Fatigue in chronic inflammatory demyelinating polyneuropathy". Muscle & Nerve. 62 (6): 673–680. doi:10.1002/mus.27038. PMID   32710648. S2CID   225480334.
  6. Boukhris, Sami; Magy, Laurent; Gallouedec, Gael; Khalil, Mohamed; Couratier, Philippe; Gil, Juan; Vallat, Jean-Michel (September 2005). "Fatigue as the main presenting symptom of chronic inflammatory demyelinating polyradiculoneuropathy: a study of 11 cases". Journal of the Peripheral Nervous System. 10 (3): 329–337. doi:10.1111/j.1085-9489.2005.10311.x. PMID   16221292. S2CID   24896124.
  7. Merkies, Ingemar S. J.; Kieseier, Bernd C. (2016). "Fatigue, Pain, Anxiety and Depression in Guillain-Barré Syndrome and Chronic Inflammatory Demyelinating Polyradiculoneuropathy". European Neurology. 75 (3–4): 199–206. doi: 10.1159/000445347 . PMID   27077919. S2CID   9884101.
  8. "C.I.D.P. Log". cidplog.com. Retrieved 2018-09-27.
  9. Latov, Norman (2014-07-01). "Diagnosis and treatment of chronic acquired demyelinating polyneuropathies". Nature Reviews Neurology. 10 (8): 435–446. doi:10.1038/nrneurol.2014.117. PMID   24980070. S2CID   23639113.
  10. Toothaker TB, Brannagan TH (2007). "Chronic inflammatory demyelinating polyneuropathies: current treatment strategies". Current Neurology and Neuroscience Reports. 7 (1): 63–70. doi:10.1007/s11910-007-0023-5. PMID   17217856. S2CID   46426663.
  11. Latov, Norman (2002). "Diagnosis of CIDP". Neurology. 59 (12 Suppl 6): S2–6. doi:10.1212/wnl.59.12_suppl_6.s2. PMID   12499464. S2CID   25742148.
  12. Said, G. (1997). Neurological Complications of HIV and AIDS. Major problems in neurology. W.B. Saunders. ISBN   978-0-7020-1836-7 . Retrieved December 13, 2023.
  13. 1 2 MCOMBE, P. A.; POLLARD, J. D.; MCLEOD, J. G. (1987). "Chronic Inflammatory Demyelinating Polyradiculoneuropathy". Brain. 110 (6). Oxford University Press (OUP): 1617–1630. doi:10.1093/brain/110.6.1617. ISSN   0006-8950. PMID   3427403 . Retrieved 13 December 2023.
  14. Hattori, Naoki; Ichimura, Miyuki; Aoki, Shin-ichiro; Nagamatsu, Masaaki; Yasuda, Takeshi; Kumazawa, Kazuhiko; Yamamoto, Koji; Sobue, Gen (1998). "Clinicopathological features of chronic inflammatory demyelinating polyradiculoneuropathy in childhood". Journal of the Neurological Sciences. 154 (1). Elsevier BV: 66–71. doi:10.1016/s0022-510x(97)00216-5. ISSN   0022-510X. PMID   9543324. S2CID   31543851.
  15. Hahn, Angelika F.; Hartung, Hans-peter; Dyck, Peter J (2005). Dyck, Peter J.; Thomas, P.K. (eds.). Peripheral Neuropathy (4 ed.). Elsevier. pp. 2221–2253. doi:10.1016/b978-0-7216-9491-7.50102-2. ISBN   978-0-7216-9491-7 . Retrieved 13 December 2023.
  16. 1 2 Doppler, Kathrin; Sommer, Claudia (March 2017). "The New Entity of Paranodopathies: A Target Structure with Therapeutic Consequences". Neurology International Open. 01 (1): E56–E60. doi: 10.1055/s-0043-102455 .
  17. Ciron, Jonathan; Carra-Dallière, Clarisse; Ayrignac, Xavier; Neau, Jean-Philippe; Maubeuge, Nicolas; Labauge, Pierre (January 2019). "The coexistence of recurrent cerebral tumefactive demyelinating lesions with longitudinally extensive transverse myelitis and demyelinating neuropathy". Multiple Sclerosis and Related Disorders. 27: 223–225. doi:10.1016/j.msard.2018.11.002. PMID   30414563. S2CID   53292167.
  18. Hampe, Christiane S. (2019). "Significance of Autoantibodies". Neuroimmune Diseases. Contemporary Clinical Neuroscience. pp. 109–142. doi:10.1007/978-3-030-19515-1_4. ISBN   978-3-030-19514-4. S2CID   201980461.
  19. Quattrini, Angelo; Previtali, Stefano C.; Kieseier, Bernd C.; Kiefer, Reinhard; Comi, Giancarlo; Hartung, Hans-Peter (2003). "Autoimmunity in the Peripheral Nervous System". Critical Reviews in Neurobiology. 15 (1). Begell House: 1–39. doi:10.1615/critrevneurobiol.v15.i1.10. ISSN   0892-0915. PMID   14513861.
  20. 1 2 Köller, Hubertus; Kieseier, Bernd C.; Jander, Sebastian; Hartung, Hans-Peter (2005-03-31). "Chronic Inflammatory Demyelinating Polyneuropathy". New England Journal of Medicine. 352 (13): 1343–1356. doi:10.1056/NEJMra041347. ISSN   0028-4793. PMID   15800230.
  21. Dalakas, Marinos C. (1999). "Advances in chronic inflammatory demyelinating polyneuropathy: disease variants and inflammatory response mediators and modifiers". Current Opinion in Neurology. 12 (4). Ovid Technologies (Wolters Kluwer Health): 403–409. doi:10.1097/00019052-199908000-00006. ISSN   1350-7540. PMID   10555828.
  22. Van den Berg, L (1995). "Increased frequencies of HPRT mutant T lymphocytes in patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy: further evidence for a role of T cells in the etiopathogenesis of peripheral demyelinating diseases". Journal of Neuroimmunology. 58 (1). Elsevier BV: 37–42. doi:10.1016/0165-5728(94)00185-q. ISSN   0165-5728. PMID   7730448. S2CID   24212928.
  23. Dalakas, M. C.; Houff, S. A.; Engel, W. K.; Madden, D. L.; Sever, J. L. (1980). "CSF "monoclonal" bands in chronic relapsing polyneuropathy". Neurology. 30 (8). Ovid Technologies (Wolters Kluwer Health): 864–867. doi:10.1212/wnl.30.8.864. ISSN   0028-3878. PMID   6251407. S2CID   20573608.
  24. Dalakas, M. C.; Engel, W. K. (October 1, 1980). "Immunoglobulin and Complement Deposits in Nerves of Patients With Chronic Relapsing Polyneuropathy". Archives of Neurology. 37 (10). American Medical Association (AMA): 637–640. doi:10.1001/archneur.1980.00500590061010. ISSN   0003-9942. PMID   6252877.
  25. Meléndez-Vásquez, Carmen; Redford, Jane; Choudhary, P.P; Gray, Ian A; Maitland, Philip; Gregson, Norman A; Smith, Kenneth J; Hughes, Richard A.C (1997). "Immunological investigation of chronic inflammatory demyelinating polyradiculoneuropathy". Journal of Neuroimmunology. 73 (1–2). Elsevier BV: 124–134. doi:10.1016/s0165-5728(96)00189-0. ISSN   0165-5728. PMID   9058768. S2CID   23264775.
  26. 1 2 Said, Gérard (2006). "Chronic inflammatory demyelinating polyneuropathy". Neuromuscular Disorders. 16 (5). Elsevier BV: 293–303. doi:10.1016/j.nmd.2006.02.008. ISSN   0960-8966. PMID   16631367. S2CID   23226032.
  27. Duggins, A. J.; McLeod, J. G.; Pollard, J. D.; Davies, L.; Yang, F.; Thompson, E. O.; Soper, J. R. (1999). "Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy". Brain. 122 (7). Oxford University Press (OUP): 1383–1390. doi: 10.1093/brain/122.7.1383 . ISSN   1460-2156. PMID   10388803.
  28. Midroni, Gyl; de Tilly, Lyne Noël; Gray, Bruce; Vajsar, Jiri (1999). "MRI of the cauda equina in CIDP: clinical correlations". Journal of the Neurological Sciences. 170 (1). Elsevier BV: 36–44. doi:10.1016/s0022-510x(99)00195-1. ISSN   0022-510X. PMID   10540034. S2CID   20762613.
  29. Lehmann, Helmar Christoph; Burke, David; Kuwabara, Satoshi (April 16, 2019). "Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment". Journal of Neurology, Neurosurgery & Psychiatry. 90 (9). BMJ: 981–987. doi: 10.1136/jnnp-2019-320314 . ISSN   0022-3050. PMID   30992333.
  30. Finsterer, J. (August 2005). "Treatment of immune-mediated, dysimmune neuropathies". Acta Neurologica Scandinavica. 112 (2): 115–125. doi: 10.1111/j.1600-0404.2005.00448.x . PMID   16008538. S2CID   10651959.
  31. Ensrud, Erik R.; Krivickas, Lisa S. (May 2001). "Acquired Inflammatory Demyelinating Neuropathies". Physical Medicine and Rehabilitation Clinics of North America. 12 (2): 321–334. doi:10.1016/S1047-9651(18)30072-X. PMID   11345010.
  32. Herraets, Ingrid J.T.; Goedee, H. Stephan; Telleman, Johan A.; van Asseldonk, Jan-Thies H.; Visser, Leo H.; van der Pol, W. Ludo; van den Berg, Leonard H. (January 2018). "High-resolution ultrasound in patients with Wartenberg's migrant sensory neuritis, a case-control study". Clinical Neurophysiology. 129 (1): 232–237. doi:10.1016/j.clinph.2017.10.040. PMID   29202391. S2CID   24416887.
  33. Goedee, H. Stephan; van der Pol, W. Ludo; van Asseldonk, Jan-Thies H.; Franssen, Hessel; Notermans, Nicolette C.; Vrancken, Alexander J.F.E.; van Es, Michael A.; Nikolakopoulos, Stavros; Visser, Leo H.; van den Berg, Leonard H. (10 January 2017). "Diagnostic value of sonography in treatment-naive chronic inflammatory neuropathies". Neurology. 88 (2): 143–151. doi:10.1212/WNL.0000000000003483. PMID   27927940. S2CID   5466514.
  34. Décard, Bernhard F.; Pham, Mirko; Grimm, Alexander (January 2018). "Ultrasound and MRI of nerves for monitoring disease activity and treatment effects in chronic dysimmune neuropathies – Current concepts and future directions". Clinical Neurophysiology. 129 (1): 155–167. doi:10.1016/j.clinph.2017.10.028. PMID   29190522. S2CID   37585666.
  35. Shibuya, Kazumoto; Sugiyama, Atsuhiko; Ito, Sho-ichi; Misawa, Sonoko; Sekiguchi, Yukari; Mitsuma, Satsuki; Iwai, Yuta; Watanabe, Keisuke; Shimada, Hitoshi; Kawaguchi, Hiroshi; Suhara, Tetsuya; Yokota, Hajime; Matsumoto, Hiroshi; Kuwabara, Satoshi (February 2015). "Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy: MR Neurography in CIDP". Annals of Neurology. 77 (2): 333–337. doi:10.1002/ana.24314. PMID   25425460. S2CID   39436370.
  36. Rajabally, Yusuf A.; Knopp, Michael J.; Martin-Lamb, Darren; Morlese, John (July 2014). "Diagnostic value of MR imaging in the Lewis–Sumner syndrome: A case series". Journal of the Neurological Sciences. 342 (1–2): 182–185. doi:10.1016/j.jns.2014.04.033. PMID   24825730. S2CID   44981467.
  37. Azulay JP (2006). "[The diagnosis of chronic axonal polyneuropathy: the poorly understood chronic polyradiculoneuritides]". Revue Neurologique (Paris) (in French). 162 (12): 1292–5. doi:10.1016/S0035-3787(06)75150-5. PMID   17151528.
  38. Hughes RA (2002). "Systematic reviews of treatment for inflammatory demyelinating neuropathy". Journal of Anatomy. 200 (4): 331–9. doi:10.1046/j.1469-7580.2002.00041.x. PMC   1570692 . PMID   12090400.
  39. Hadden, Robert D. M.; Marreno, Fabrizio (2016-12-28). "Switch from intravenous to subcutaneous immunoglobulin in CIDP and MMN: improved tolerability and patient satisfaction". Therapeutic Advances in Neurological Disorders. 8 (1): 14–19. doi:10.1177/1756285614563056. ISSN   1756-2856. PMC   4286942 . PMID   25584070.
  40. Odaka M, Tatsumoto M, Susuki K, Hirata K, Yuki N (2005). "Intractable chronic inflammatory demyelinating polyneuropathy treated successfully with ciclosporin". Journal of Neurology, Neurosurgery, and Psychiatry. 76 (8): 1115–20. doi:10.1136/jnnp.2003.035428. PMC   1739743 . PMID   16024890.
  41. Rajabally, Yusuf A. (2017). "Unconventional treatments for chronic inflammatory demyelinating polyneuropathy". Neurodegenerative Disease Management. 7 (5): 331–342. doi:10.2217/nmt-2017-0017. PMID   29043889.
  42. 1 2 Burman, Joachim; Tolf, Andreas; Hägglund, Hans; Askmark, Håkan (2018-02-01). "Autologous haematopoietic stem cell transplantation for neurological diseases". Journal of Neurology, Neurosurgery, and Psychiatry. 89 (2): 147–155. doi:10.1136/jnnp-2017-316271. ISSN   0022-3050. PMC   5800332 . PMID   28866625.
  43. "MS patients could be offered stem cell transplants as a first-line treatment in new world-first trial". www.sheffield.ac.uk. 2022-11-29. Retrieved 2023-08-16.
  44. "GAIN Charity: Guillain-Barré Syndrome (GBS) & Associated Neuropathies". GAIN. Retrieved 2024-06-27.
  45. "Home". GBS/CIDP Foundation International. Retrieved 2024-06-27.
  46. "Epodin". Epodin. Retrieved 2024-06-27.
  47. Lewis, RA; Sumner, AJ; Brown, MJ; Asbury, AK (September 1982). "Multifocal demyelinating neuropathy with persistent conduction block". Neurology. 32 (9): 958–64. doi:10.1212/wnl.32.9.958. PMID   7202168. S2CID   40027684.
  48. Dyck, Peter James; O'Brien, Peter C.; Oviatt, Karen F.; Dinapoli, Robert P.; Daube, Jasper R.; Bartleson, John D.; Mokri, Bahram; Swift, Thomas; Low, Phillip A.; Windebank, Anthony J. (February 1982). "Prednisone improves chronic inflammatory demyelinating polyradiculoneuropathy more than no treatment". Annals of Neurology. 11 (2): 136–141. doi:10.1002/ana.410110205. PMID   7041788. S2CID   24567176.
  49. Parry, Gareth J.; Clarke, Stephen (February 1988). "Multifocal acquired demyelinating neuropathy masqurading as motor neuron disease". Muscle & Nerve. 11 (2): 103–107. doi:10.1002/mus.880110203. PMID   3343985. S2CID   21481288.
  50. Pestronk, A; Cornblath, DR; Ilyas, AA; Baba, H; Quarles, RH; Griffin, JW; Alderson, K; Adams, RN (July 1988). "A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside". Annals of Neurology. 24 (1): 73–8. doi:10.1002/ana.410240113. PMID   2843079. S2CID   44845902.
  51. Nobile-Orazio, Eduardo (April 2001). "Multifocal motor neuropathy". Journal of Neuroimmunology. 115 (1–2): 4–18. doi:10.1016/S0165-5728(01)00266-1. PMC   1073940 . PMID   11282149.
  52. van Doorn, Pieter A.; Garssen, Marcel P.J. (October 2002). "Treatment of immune neuropathies". Current Opinion in Neurology. 15 (5): 623–631. doi:10.1097/00019052-200210000-00014. PMID   12352007. S2CID   29950514.
  53. Lewis, Richard Alan (October 2007). "Neuropathies associated with conduction block". Current Opinion in Neurology. 20 (5): 525–530. doi:10.1097/WCO.0b013e3282efa143. PMID   17885439. S2CID   32166227.
  54. Viala, K; Renié, L; Maisonobe, T; Béhin, A; Neil, J; Léger, JM; Bouche, P (September 2004). "Follow-up study and response to treatment in 23 patients with Lewis-Sumner syndrome". Brain: A Journal of Neurology. 127 (Pt 9): 2010–7. doi: 10.1093/brain/awh222 . PMID   15289267.
  55. Rajabally, Yusuf A.; Chavada, Govindsinh (February 2009). "Lewis-sumner syndrome of pure upper-limb onset: Diagnostic, prognostic, and therapeutic features". Muscle & Nerve. 39 (2): 206–220. doi:10.1002/mus.21199. PMID   19145651. S2CID   43478826.
  56. "Riley v. Secretary of Health and Human Services, Case No. 16-262V". United States Court of Federal Claims. July 30, 2019.
  57. "United States Court of Federal Claims Opinions/Orders". United States Court of Federal Claims. October 24, 2019. Retrieved October 24, 2019.