Clinical data | |
---|---|
ATC code | |
Identifiers | |
ChemSpider |
|
ChEMBL | |
(what is this?) (verify) |
Anti-thymocyte globulin (ATG) is an infusion of horse or rabbit-derived antibodies against human T cells and their precursors (thymocytes), which is used in the prevention and treatment of acute rejection in organ transplantation and therapy of aplastic anemia due to bone marrow insufficiency.
Two antithymocyte globulin (ATG) agents licensed for clinical use in the United States are Thymoglobulin (rabbit ATG, rATG, Genzyme) and Atgam (equine ATG, eATG, Pfizer). Thymoglobulin and Atgam are currently licensed for use in the treatment of renal allograft rejection; Atgam is additionally licensed for use in the treatment of aplastic anemia. Both drugs are used in off-label applications, especially as immunosuppression induction agents before and/or during kidney transplantation. A rabbit anti-T lymphocyte globulin made by Neovii Pharmaceuticals is marketed outside of the United States under the name Grafalon.
ATG administration very substantially reduces immune competence in patients with normal immune systems, through a combination of actions, some explicitly understood and some more hypothetical. rATG in particular effects large reductions (through cell lysis) in the number of circulating T lymphocytes, hence preventing (or at least delaying) the cellular rejection of transplanted organs. However, medical opinion remains divided as to when the benefit of this profound reduction in T cells outweighs the concomitant increased risks of infection and malignancy.
In the United States it is frequently given at the time of the transplant to prevent graft-versus-host disease, [1] although many European centers prefer to reserve its use for the treatment of steroid-resistant acute rejection, as European centres generally serve more homogeneous populations and rejection tends to be less of a problem.[ citation needed ]
ATG use can induce cytokine release syndrome, and has been thought to increase the risk of post-transplant lymphoproliferative disorder (PTLD); however, this association may not apply when lower dosing regimens are used. There is some evidence to suggest that inducing immunosuppression with rATG at organ transplantation may create conditions in the patient's immune system favorable to the development of immunological tolerance, but the exact basis for such a development remains largely speculative. Temporary depletion of the T-cell population at the time of the transplant also risks delayed acute rejection, which may be missed and cause severe damage to the graft.
Anti-IL-2Rα receptor antibodies such as basiliximab and daclizumab are increasingly being used in place of ATG as an induction therapy, as they do not cause cytokine release syndrome and (theoretically) improve the development of tolerance.
The cytokine release syndrome associated with ATG administration frequently causes high grade fevers (over 39 °C), chills, and possibly rigors during administration, for which reason steroids (normally methylprednisolone), diphenhydramine 25–50 mg, and acetaminophen 650 mg are usually co-administered. Such adverse reactions can often be controlled by slowing the infusion rate.
The first report of immunizing an animal of one species (guinea pig) against the immune cells of another species (mouse lymphocytes) was by Élie Metchnikoff in 1899. He reported injecting cells recovered from mouse lymph nodes into Guinea pigs and waiting for the immunization to result in the accumulation of anti-mouse antibodies in the Guinea pig blood. When he subsequently collected serum from these Guinea pigs and injected it into normal mice he observed a marked depletion in the number of circulating mouse lymphocytes.
Rabbit ATG has been used in two randomised trials to reduce acute graft versus host disease in recipients receiving progenitor cell transplants. [2] While higher doses (15 mg/kg) reduced acute graft versus host this was offset by increased infections. However a long term follow up showed that at both high and low (7.5 mg/kg) doses chronic graft versus host was reduced. [3] A similar trial of anti-lymphocyte globulin showed a trend in reduction of acute graft versus host that was not statistically significant, but a reduction in chronic graft versus host. [4] The Canadian Blood and Marrow Transplant Group is currently conducting the first randomised trial in chronic graft versus host using an even lower dose of rabbit ATG (4.5 mg/kg) in an attempt to confirm these observations. The endpoint is the reduction in the proportion of patients with chronic graft versus host at 1 year, off immunosuppressants. [5]
Aplastic anemia (AA) is a severe hematologic condition in which the body fails to make blood cells in sufficient numbers. Aplastic anemia is associated with cancer and various cancer syndromes. Blood cells are produced in the bone marrow by stem cells that reside there. Aplastic anemia causes a deficiency of all blood cell types: red blood cells, white blood cells, and platelets.
Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.
Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipient and by use of immunosuppressant drugs after transplant.
Cytokine release syndrome (CRS) is a form of systemic inflammatory response syndrome (SIRS) that can be triggered by a variety of factors such as infections and certain drugs. It refers to cytokine storm syndromes (CSS) and occurs when large numbers of white blood cells are activated and release inflammatory cytokines, which in turn activate yet more white blood cells. CRS is also an adverse effect of some monoclonal antibody medications, as well as adoptive T-cell therapies. When occurring as a result of a medication, it is also known as an infusion reaction.
Anti-lymphocyte globulin (ALG) is an infusion of animal- antibodies against human T cells which is used in the treatment of acute rejection in organ transplantation. Its use was first reported by Thomas Starzl in 1966. Its use in transplant was supplanted by thymoglobulin between 1984 and 1999.
Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood in order to replicate inside of a patient and to produce additional normal blood cells. It may be autologous, allogeneic or syngeneic.
Graft-versus-host disease (GvHD) is a syndrome, characterized by inflammation in different organs. GvHD is commonly associated with bone marrow transplants and stem cell transplants.
Xenotransplantation, or heterologous transplant, is the transplantation of living cells, tissues or organs from one species to another. Such cells, tissues or organs are called xenografts or xenotransplants. It is contrasted with allotransplantation, syngeneic transplantation or isotransplantation and autotransplantation. Xenotransplantation is an artificial method of creating an animal-human chimera, that is, a human with a subset of animal cells. In contrast, an individual where each cell contains genetic material from a human and an animal is called a human–animal hybrid.
Alloimmunity is an immune response to nonself antigens from members of the same species, which are called alloantigens or isoantigens. Two major types of alloantigens are blood group antigens and histocompatibility antigens. In alloimmunity, the body creates antibodies against the alloantigens, attacking transfused blood, allotransplanted tissue, and even the fetus in some cases. Alloimmune (isoimmune) response results in graft rejection, which is manifested as deterioration or complete loss of graft function. In contrast, autoimmunity is an immune response to the self's own antigens. Alloimmunization (isoimmunization) is the process of becoming alloimmune, that is, developing the relevant antibodies for the first time.
Donor lymphocyte infusion (DLI) or buffy coat infusion is a form of adoptive immunotherapy used after hematopoietic stem cell transplantation.
An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include interleukin-1 (IL-1), IL-6, IL-12, and IL-18, tumor necrosis factor alpha (TNF-α), interferon gamma (IFNγ), and granulocyte-macrophage colony stimulating factor (GM-CSF) and play an important role in mediating the innate immune response. Inflammatory cytokines are predominantly produced by and involved in the upregulation of inflammatory reactions.
TOL101, is a murine-monoclonal antibody specific for the human αβ T cell receptor. In 2010 it was an Investigational New Drug under development by Tolera Therapeutics, Inc.
TK is an experimental cell therapy which may be used to treat high-risk leukemia. It is currently undergoing a Phase III clinical trial to determine efficacy and clinical usefulness.
Graft-versus-tumor effect (GvT) appears after allogeneic hematopoietic stem cell transplantation (HSCT). The graft contains donor T cells that can be beneficial for the recipient by eliminating residual malignant cells. GvT might develop after recognizing tumor-specific or recipient-specific alloantigens. It could lead to remission or immune control of hematologic malignancies. This effect applies in myeloma and lymphoid leukemias, lymphoma, multiple myeloma and possibly breast cancer. It is closely linked with graft-versus-host disease (GvHD), as the underlying principle of alloimmunity is the same. CD4+CD25+ regulatory T cells (Treg) can be used to suppress GvHD without loss of beneficial GvT effect. The biology of GvT response still isn't fully understood but it is probable that the reaction with polymorphic minor histocompatibility antigens expressed either specifically on hematopoietic cells or more widely on a number of tissue cells or tumor-associated antigens is involved. This response is mediated largely by cytotoxic T lymphocytes (CTL) but it can be employed by natural killers as separate effectors, particularly in T-cell-depleted HLA-haploidentical HSCT.
Regulatory B cells (Bregs or Breg cells) represent a small population of B cells that participates in immunomodulation and in the suppression of immune responses. The population of Bregs can be further separated into different human or murine subsets such as B10 cells, marginal zone B cells, Br1 cells, GrB+B cells, CD9+ B cells, and even some plasmablasts or plasma cells. Bregs regulate the immune system by different mechanisms. One of the main mechanisms is the production of anti-inflammatory cytokines such as interleukin 10 (IL-10), IL-35, or transforming growth factor beta (TGF-β). Another known mechanism is the production of cytotoxic Granzyme B. Bregs also express various inhibitory surface markers such as programmed death-ligand 1 (PD-L1), CD39, CD73, and aryl hydrocarbon receptor. The regulatory effects of Bregs were described in various models of inflammation, autoimmune diseases, transplantation reactions, and in anti-tumor immunity.
Guo Mei is a hematologist and associate director of 307th Hospital of Chinese People’s Liberation Army and deputy director of Radiation Research Institute.
Thymoglobulin is an anti-human thymocyte immunoglobulin preparation made of purified polyclonal antibodies derived from rabbits. While these antibodies have a variety of specificities, their main mechanism of immunosuppression is through depletion of T cells. Thymoglobulin is currently approved for clinical use in Europe and the United States for renal allograft rejection, prevention of graft-vs.-host disease, and conditions involving bone marrow failure, including aplastic anemia and has additional off-label uses.
T-cell depletion (TCD) is the process of T cell removal or reduction, which alters the immune system and its responses. Depletion can occur naturally or be induced for treatment purposes. TCD can reduce the risk of graft-versus-host disease (GVHD), which is a common issue in transplants. The idea that TCD of the allograft can eliminate GVHD was first introduced in 1958. In humans the first TCD was performed in severe combined immunodeficiency patients.
Belumosudil, sold under the brand name Rezurock among others, is a medication used for the treatment of chronic graft versus host disease (cGvHD). It is in the class of drugs known as serine/threonine kinase inhibitors. Specifically, it is an inhibitor of Rho-associated coiled-coil kinase 2. Belumosudil binds to and inhibits the serine/threonine kinase activity of ROCK2. This inhibits ROCK2-mediated signaling pathways which play major roles in pro- and anti-inflammatory immune cell responses. A genomic study in human primary cells demonstrated that the drug also has effects on oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling.
Shimon Slavin is an Israeli professor of medicine. Slavin pioneered the use of immunotherapy mediated by allogeneic donor lymphocytes and innovative methods for stem cell transplantation for the cure of hematological malignancies and solid tumors, and using hematopoietic stem cells for induction of transplantation tolerance to bone marrow and donor allografts.