Gusperimus

Last updated
Gusperimus
Skeletal formula of a gusperimus minor tautomer Gusperimus.svg
Skeletal formula of a gusperimus minor tautomer
Names
Other names
N-[2-[4-(3-Aminopropylamino)butylamino]-1-hydroxy-2-oxoethyl]-7-(diaminomethylideneamino)heptanamide [1]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
KEGG
MeSH gusperimus
PubChem CID
UNII
  • InChI=1S/C17H37N7O3/c18-9-7-11-21-10-5-6-12-22-15(26)16(27)24-14(25)8-3-1-2-4-13-23-17(19)20/h16,21,27H,1-13,18H2,(H,22,26)(H,24,25)(H4,19,20,23) Yes check.svgY
    Key: IDINUJSAMVOPCM-UHFFFAOYSA-N Yes check.svgY
  • N=C(N)NCCCCCCC(=O)NC(O)C(=O)NCCCCNCCCN
Properties
C17H37N7O3
Molar mass 387.529 g·mol−1
log P −0.933
Acidity (pKa)11.588
Basicity (pKb)2.409
Pharmacology
L04AA19 ( WHO )
  • Intravenous
  • Subcutaneous
Pharmacokinetics:
100%
Legal status
  • In general: ℞ (Prescription only)
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Gusperimus is an immunosuppressive drug. It is a derivative of the naturally occurring HSP70 inhibitor spergualin, and inhibits the interleukin-2-stimulated maturation of T cells to the S and G2/M phases and the polarization of the T cells into IFN-gamma-secreting Th1 effector T cells, resulting in the inhibition of growth of activated naive CD4 T cells.

Contents

Gusperimus was developed by Bristol-Myers Squibb. Currently, it is manufactured and sponsored for use as an orphan drug and for clinical studies by the Japanese company Euro Nippon Kayaku. The patent claim (see quotation) is that Gusperimus may be useful for a variety of hyperreactive inflammatory diseases such as autoimmune diseases. The drug is available in vials containing 100 mg each.

There is little information about the pharmacokinetic properties of gusperimus.

Overview

The European Commission assigned orphan drug status to Gusperimus in 2001 for the treatment of granulomatosis with polyangiitis, a serious form of vasculitis frequently associated with permanent disability and/or fatal outcome. There have been many cases of patients resistant to all forms of usual treatment responding very well to Gusperimus.

It has been proposed that gusperimus may benefit patients with the neurological disease amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). ALS causes permanent motor deficits and disabilities up to the point that almost all motor functions, including breathing and bladder control, are lost. Patients usually have no intellectual impairments. Currently, there are no results from controlled studies in ALS patients.

There have also been positive and negative anecdotal reports in patients with multiple sclerosis. As with ALS, there are no sufficient studies in MS patients.

Gusperimus may possibly be of use in more common diseases and conditions such as rheumatoid arthritis, Crohn's disease, lupus erythematosus, and the prevention and therapy of transplant rejection or graft-versus-host disease.

Adverse effects

Currently, only provisional and preliminary data about side-effects is available. The following side-effects have been noticed so far:

It is not known if therapy with gusperimus may increase the risk of malignant diseases (lymphoma, leukemia, solid tumors), as is the case with other highly potent immunosuppressant agents such as ciclosporin or tacrolimus.

Interactions

There has been little experience about clinically relevant interactions. These might be:

Dosage

Gusperimus is used in therapeutic cycles. The daily dose and the length of each cycle as well as the length of the treatment free interval depend on the degree of leukopenia/neutropenia caused by gusperimus. It is recommended to obtain complete WBC (White Blood Cell) counts during and after each cycle frequently.

Synonyms

2Common references are:

Synthesis

Gusperimus synthesis: Gusperimus synthesis.png
Gusperimus synthesis:

References

  1. "gusperimus - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 27 March 2005. Identification. Retrieved 4 July 2012.
  2. Dischino, D. D.; Cook, D. J.; Saulnier, M. G.; Tepper, M. A. (1993). "Synthesis of tritium labeled (±) 15-deoxyspergualin trihydrochloride". Journal of Labelled Compounds and Radiopharmaceuticals. 33 (2): 137. doi:10.1002/jlcr.2580330208.