Cytokine release syndrome

Last updated
Cytokine release syndrome
Other namesInfusion-related reaction (IRR), infusion reaction, [1] cytokine storm [2]
Specialty Immunology

In immunology, cytokine release syndrome (CRS) is a form of systemic inflammatory response syndrome (SIRS) that can be triggered by a variety of factors such as infections and certain drugs. [3] It refers to cytokine storm syndromes (CSS) [4] and occurs when large numbers of white blood cells are activated and release inflammatory cytokines, which in turn activate yet more white blood cells. CRS is also an adverse effect of some monoclonal antibody medications, as well as adoptive T-cell therapies. [5] [6] When occurring as a result of a medication, it is also known as an infusion reaction. [1]

Contents

The term cytokine storm is often used interchangeably with CRS but, despite the fact that they have similar clinical phenotype, their characteristics are different. When occurring as a result of a therapy, CRS symptoms may be delayed until days or weeks after treatment. Immediate-onset CRS is a cytokine storm, [7] although severe cases of CRS have also been called cytokine storms. [2]

Signs and symptoms

Symptoms include fever that tends to fluctuate, fatigue, loss of appetite, muscle and joint pain, nausea, vomiting, diarrhea, rashes, fast breathing, rapid heartbeat, low blood pressure, seizures, headache, confusion, delirium, hallucinations, tremor, and loss of coordination. [5]

Lab tests and clinical monitoring show low blood oxygen, widened pulse pressure, increased cardiac output (early), potentially diminished cardiac output (late), high levels of nitrogen compounds in the blood, elevated D-dimer, elevated transaminases, factor I deficiency and excessive bleeding, higher-than-normal level of bilirubin. [5] [8]

Cause

CRS occurs when large numbers of white blood cells, including B cells, T cells, natural killer cells, macrophages, dendritic cells, and monocytes are activated and release inflammatory cytokines, which activate more white blood cells in a positive feedback loop of pathogenic inflammation. [5] Immune cells are activated by stressed or infected cells through receptor-ligand interactions. [9]

This can occur when the immune system is fighting pathogens, as cytokines produced by immune cells recruit more effector immune cells such as T-cells and inflammatory monocytes (which differentiate into macrophages) to the site of inflammation or infection. In addition, pro-inflammatory cytokines binding their cognate receptor on immune cells results in activation and stimulation of further cytokine production. [10] This process, when dysregulated, can be life-threatening due to systemic hyper-inflammation, hypotensive shock, and multi-organ failure. [ citation needed ]

Adoptive cell transfer of autologous T-cells modified with chimeric antigen receptors (CAR-T cell therapy) also causes CRS. [5] Serum samples of patients with CAR-T associated CRS have elevated levels of IL-6, IFN-γ, IL-8 (CXCL8), IL-10, GM-CSF, MIP-1α/β, MCP-1 (CCL2), CXCL9, and CXCL10 (IP-10). [11] The most predictive biomarkers 36h after CAR-T infusion of CRS are a fever ≥38.9 °C (102 °F) and elevated levels of MCP-1 in serum. [12] Many of the cytokines elevated in CRS are not produced by CAR-T cells, but by myeloid cells that are pathogenically licensed through T-cell-mediated activating mechanisms. For example, in vitro co-culture experiments have demonstrated IL-6, MCP-1, and MIP-1 are not produced by CAR-T cells, but rather by inflammatory myeloid lineage cells. [13] In vivo models have demonstrated NSG (NOD/SCID/γ-chain deficient mice) with defects of both lymphocyte and myeloid lineage compartments do not develop CRS after CAR-T cell infusion. [14]

In addition to adoptive T-cell therapies, severe CRS or cytokine reactions can occur in a number of infectious and non-infectious diseases including graft-versus-host disease (GVHD), coronavirus disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), sepsis, Ebola, avian influenza, smallpox, and systemic inflammatory response syndrome (SIRS). [15]

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sufficiently cleared by the early acute phase anti-viral response in most individuals, some progress to a hyperinflammatory condition, often with life-threatening pulmonary involvement. This systemic hyperinflammation results in inflammatory lymphocytic and monocytic infiltration of the lung and the heart, causing ARDS and cardiac failure. [16] Patients with fulminant COVID-19 and ARDS have classical serum biomarkers of CRS including elevated CRP, LDH, IL-6, and ferritin. [17]

Hemophagocytic lymphohistiocytosis and Epstein-Barr virus-related hemophagocytic lymphohistiocytosis are caused by extreme elevations in cytokines and can be regarded as one form of severe cytokine release syndrome. [18]

Medications

Cytokine reaction syndrome may also be induced by certain medications, such as the CD20 antibody rituximab and the CD19 CAR T cell tisagenlecleucel. The experimental drug TGN1412—also known as Theralizumab—caused extremely serious symptoms when given to six participants in a Phase I trial. [2] A controlled and limited CRS is triggered by active fever therapy with mixed bacterial vaccines (MBV) according to Coley; it is used for oncological and certain chronic diseases. [19] CRS has also arisen with biotherapeutics intended to suppress or activate the immune system through receptors on white blood cells. Muromonab-CD3, an anti-CD3 monoclonal antibody intended to suppress the immune system to prevent rejection of organ transplants; alemtuzumab, which is anti-CD52 and used to treat blood cancers as well as multiple sclerosis and in organ transplants; and rituximab, which is anti-CD20 and used to treat blood cancers and auto-immune disorders, all cause CRS. [5]

Diagnosis

CRS needs to be distinguished from symptoms of the disease itself and, in the case of drugs, from other adverse effects—for example tumor lysis syndrome requires different interventions. As of 2015, differential diagnoses depended on the judgement of doctor as there were no objective tests. [5]

Classification

CRS is a form of systemic inflammatory response syndrome and is an adverse effect of some drugs. [5]

The Common Terminology Criteria for Adverse Events classifications for CRS as of version 4.03 issued in 2010 were: [5] [20]

GradesToxicity
Grade 1Mild reaction, infusion interruption not indicated; intervention not indicated
Grade 2Therapy or infusion interruption indicated but responds promptly to symptomatic treatment (e.g., antihistamines, NSAIDS, narcotics, IV fluids); prophylactic medications indicated for <=24 hrs
Grade 3Prolonged (e.g., not rapidly responsive to symptomatic medication or brief interruption of infusion); recurrence of symptoms following initial improvement; hospitalization indicated for clinical sequelae (e.g., renal impairment, pulmonary infiltrates)
Grade 4Life-threatening consequences; pressor or ventilatory support indicated
Grade 5Death

Prevention

Severe CRS caused by some drugs can be prevented by using lower doses, infusing slowly, and administering anti-histamines or corticosteroids before and during administration of the drug. [5]

In vitro assays have been developed to understand the risk that pre-clinical drug candidates might cause CRS and guide dosing for Phase I trials, and regulatory agencies expect to see results of such tests in investigational new drug applications. [2] [21]

A modified Chandler loop model can be used as a preclinical tool to assess infusion reactions. [22]

Management

Treatment for less severe CRS is supportive, addressing the symptoms like fever, muscle pain, or fatigue. Moderate CRS requires oxygen therapy and giving fluids and antihypotensive agents to raise blood pressure. For moderate to severe CRS, the use of immunosuppressive agents like corticosteroids may be necessary, but judgment must be used to avoid negating the effect of drugs intended to activate the immune system. [5]

Tocilizumab, an anti-IL-6 monoclonal antibody, was FDA approved for steroid-refractory CRS based on retrospective case study data. [5] [6]

Lenzilumab, an anti-GM-CSF monoclonal antibody, is also clinically proven to be effective at managing cytokine release by reducing activation of myeloid cells and decreasing the production of IL-1, IL-6, MCP-1, MIP-1, and IP-10. [23] [24] Additionally, as a soluble cytokine blockade, it will not increase serum levels of GM-CSF (a phenomenon seen with tocilizumab and IL-6). [25]

Although frequently used to treat severe CRS in people with ARDS, corticosteroids and NSAIDs have been evaluated in clinical trials and have shown no effect on lung mechanics, gas exchange, or beneficial outcome in early established ARDS. [15]

Epidemiology

Severe CRS is rare. Minor and moderate CRS are common side effects of immune-modulating antibody therapies and CAR-T therapies. [6]

Research

Key therapeutic targets to abrogate hyper-inflammation in CRS are IL-1, IL-6, and GM-CSF. An in vivo model found that GM-CSF knockout CAR-T cells do not induce CRS in mice. However, IL-1 knockout and IL-6 knockout hosts (whose myeloid cells are deficient in IL-1 and IL-6, respectively) were susceptible to CRS after the administration of wild-type CAR-T cells. [14] It is thought this may be because while blockade of IL-1 and IL-6 are myeloid-derived cytokines are thus too far downstream of the inflammatory cascade. Moreover, while tocilizumab (anti-IL-6R monoclonal antibody) may have an anti-inflammatory and antipyretic effect, it has been shown to increase serum levels of IL-6 by saturating the receptor, thus driving the cytokine across the blood brain barrier (BBB) and worsening neurotoxicity. [26] Monoclonal antibody blockade of GM-CSF with lenzilumab has been demonstrated to protect mice from CAR-T associated CRS and neurotoxicity while maintaining anti-leukemic efficacy. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Natural killer cell</span> Type of cytotoxic lymphocyte

Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system. They belong to the rapidly expanding family of known innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cell and other intracellular pathogens acting at around 3 days after infection, and respond to tumor formation. Most immune cells detect the antigen presented on major histocompatibility complex (MHC) on infected cell surfaces, but NK cells can recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class I. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">Granulocyte-macrophage colony-stimulating factor</span> Mammalian protein found in Homo sapiens

Granulocyte-macrophage colony-stimulating factor (GM-CSF), also known as colony-stimulating factor 2 (CSF2), is a monomeric glycoprotein secreted by macrophages, T cells, mast cells, natural killer cells, endothelial cells and fibroblasts that functions as a cytokine. The pharmaceutical analogs of naturally occurring GM-CSF are called sargramostim and molgramostim.

<span class="mw-page-title-main">Interleukin 3</span> Protein-coding gene in the species Homo sapiens

Interleukin 3 (IL-3) is a protein that in humans is encoded by the IL3 gene localized on chromosome 5q31.1. Sometimes also called colony-stimulating factor, multi-CSF, mast cell growth factor, MULTI-CSF, MCGF; MGC79398, MGC79399: the protein contains 152 amino acids and its molecular weight is 17 kDa. IL-3 is produced as a monomer by activated T cells, monocytes/macrophages and stroma cells. The major function of IL-3 cytokine is to regulate the concentrations of various blood-cell types. It induces proliferation and differentiation in both early pluripotent stem cells and committed progenitors. It also has many more specific effects like the regeneration of platelets and potentially aids in early antibody isotype switching.

Theralizumab is an immunomodulatory drug developed by Thomas Hünig of the University of Würzburg. It was withdrawn from development after inducing severe inflammatory reactions as well as chronic organ failure in the first-in-human study by Parexel in London in March 2006. The developing company, TeGenero Immuno Therapeutics, went bankrupt later that year. The commercial rights were then acquired by a Russian startup, TheraMAB. The drug was renamed TAB08. Phase I and II clinical trials have been completed for arthritis and clinical trials have been initiated for cancer.

<span class="mw-page-title-main">Integrin alpha M</span> Mammalian protein found in Homo sapiens

Integrin alpha M (ITGAM) is one protein subunit that forms heterodimeric integrin alpha-M beta-2 (αMβ2) molecule, also known as macrophage-1 antigen (Mac-1) or complement receptor 3 (CR3). ITGAM is also known as CR3A, and cluster of differentiation molecule 11B (CD11B). The second chain of αMβ2 is the common integrin β2 subunit known as CD18, and integrin αMβ2 thus belongs to the β2 subfamily integrins.

<span class="mw-page-title-main">Biological therapy for inflammatory bowel disease</span>

Biological therapy, the use of medications called biopharmaceuticals or biologics that are tailored to specifically target an immune or genetic mediator of disease, plays a major role in the treatment of inflammatory bowel disease. Even for diseases of unknown cause, molecules that are involved in the disease process have been identified, and can be targeted for biological therapy. Many of these molecules, which are mainly cytokines, are directly involved in the immune system. Biological therapy has found a niche in the management of cancer, autoimmune diseases, and diseases of unknown cause that result in symptoms due to immune related mechanisms.

<span class="mw-page-title-main">Mevalonate kinase deficiency</span> Medical condition

Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder that disrupts the biosynthesis of cholesterol and isoprenoids. It is a very rare genetic disease.

<span class="mw-page-title-main">Interleukin 17</span> Group of proteins

Interleukin 17 family is a family of pro-inflammatory cystine knot cytokines. They are produced by a group of T helper cell known as T helper 17 cell in response to their stimulation with IL-23. Originally, Th17 was identified in 1993 by Rouvier et al. who isolated IL17A transcript from a rodent T-cell hybridoma. The protein encoded by IL17A is a founding member of IL-17 family. IL17A protein exhibits a high homology with a viral IL-17-like protein encoded in the genome of T-lymphotropic rhadinovirus Herpesvirus saimiri. In rodents, IL-17A is often referred to as CTLA8.

CD16, also known as FcγRIII, is a cluster of differentiation molecule found on the surface of natural killer cells, neutrophils, monocytes, macrophages, and certain T cells. CD16 has been identified as Fc receptors FcγRIIIa (CD16a) and FcγRIIIb (CD16b), which participate in signal transduction. The most well-researched membrane receptor implicated in triggering lysis by NK cells, CD16 is a molecule of the immunoglobulin superfamily (IgSF) involved in antibody-dependent cellular cytotoxicity (ADCC). It can be used to isolate populations of specific immune cells through fluorescent-activated cell sorting (FACS) or magnetic-activated cell sorting, using antibodies directed towards CD16.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">FCGR2B</span>

Fc fragment of IgG receptor IIb is a low affinity inhibitory receptor for the Fc region of immunoglobulin gamma (IgG). FCGR2B participates in the phagocytosis of immune complexes and in the regulation of antibody production by B lymphocytes.

An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include interleukin-1 (IL-1), IL-6, IL-12, and IL-18, tumor necrosis factor alpha (TNF-α), interferon gamma (IFNγ), and granulocyte-macrophage colony stimulating factor (GM-CSF) and play an important role in mediating the innate immune response. Inflammatory cytokines are predominantly produced by and involved in the upregulation of inflammatory reactions.

Anti-interleukin-6 agents are a class of therapeutics. Interleukin 6 is a cytokine relevant to many inflammatory diseases and many cancers. Hence, anti-IL6 agents have been sought. In rheumatoid arthritis they can help patients unresponsive to TNF inhibitors.

The NK-92 cell line is an immortalised cell line that has the characteristics of a type of immune cell found in human blood called ’natural killer’ (NK) cells. Blood NK cells and NK-92 cells recognize and attack cancer cells as well as cells that have been infected with a virus, bacteria, or fungus. NK-92 cells were first isolated in 1992 in the laboratory of Hans Klingemann at the British Columbia Cancer Agency in Vancouver, Canada, from a patient who had a rare NK cell non-Hodgkin-lymphoma. These cells were subsequently developed into a continuously growing cell line. NK-92 cells are distinguished by their suitability for expansion to large numbers, ability to consistently kill cancer cells and testing in clinical trials. When NK-92 cells recognize a cancerous or infected cell, they secrete perforin that opens holes into the diseased cells and releases granzymes that kill the target cells. NK-92 cells are also capable of producing cytokines such as tumor necrosis factor alpha (TNF-a) and interferon gamma (IFN-y), which stimulates proliferation and activation of other immune cells.

Lenzilumab is a humanized monoclonal antibody that targets colony stimulating factor 2 (CSF2)/granulocyte-macrophage colony stimulating factor (GM-CSF).

Otilimab is a fully human antibody which has been developed by the biotechnology company MorphoSys. It can also be referred to as HuCAL antibody, HuCAL standing for Human Combinatorial Antibody Library and being a technology used to generate monoclonal antibodies. Otilimab is directed against the granulocyte-macrophage colony stimulating factor (GM-CSF), a monomeric glycoprotein functioning as a cytokine promoting both proliferation and activation of macrophages and neutrophils.

References

  1. 1 2 Vogel WH (April 2010). "Infusion reactions: diagnosis, assessment, and management". Clinical Journal of Oncology Nursing. 14 (2): E10-21. doi: 10.1188/10.CJON.E10-E21 . PMID   20350882.
  2. 1 2 3 4 Vidal JM, Kawabata TT, Thorpe R, Silva-Lima B, Cederbrant K, Poole S, et al. (August 2010). "In vitro cytokine release assays for predicting cytokine release syndrome: the current state-of-the-science. Report of a European Medicines Agency Workshop". Cytokine. 51 (2): 213–5. doi:10.1016/j.cyto.2010.04.008. PMID   20471854.
  3. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. (June 2018). "Cytokine release syndrome". Journal for Immunotherapy of Cancer. 6 (1): 56. doi: 10.1186/s40425-018-0343-9 . PMC   6003181 . PMID   29907163.
  4. Behrens EM, Koretzky GA (June 2017). "Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era". Arthritis & Rheumatology. 69 (6): 1135–1143. doi: 10.1002/art.40071 . PMID   28217930. S2CID   21925082.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. (July 2014). "Current concepts in the diagnosis and management of cytokine release syndrome". Blood. 124 (2): 188–95. doi:10.1182/blood-2014-05-552729. PMC   4093680 . PMID   24876563.
  6. 1 2 3 Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P (April 2017). "New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management". Critical Care. 21 (1): 89. doi: 10.1186/s13054-017-1678-1 . PMC   5391608 . PMID   28407743.
  7. Porter D, Frey N, Wood PA, Weng Y, Grupp SA (March 2018). "Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel". Journal of Hematology & Oncology. 11 (1): 35. doi: 10.1186/s13045-018-0571-y . PMC   5833070 . PMID   29499750.
  8. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016). "Toxicity and management in CAR T-cell therapy". Molecular Therapy: Oncolytics. 3: 16011. doi:10.1038/mto.2016.11. PMC   5008265 . PMID   27626062.
  9. Liu Q, Zhou YH, Yang ZQ (January 2016). "The cytokine storm of severe influenza and development of immunomodulatory therapy". Cellular & Molecular Immunology. 13 (1): 3–10. doi:10.1038/cmi.2015.74. PMC   4711683 . PMID   26189369.
  10. Murphy K, Travers P, Walport M (2007). "Signaling Through Immune System Receptors". Janeway's Immunobiology (7th ed.). London: Garland. ISBN   978-0-8153-4123-9.
  11. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. (June 2016). "Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia". Cancer Discovery. 6 (6): 664–79. doi:10.1158/2159-8290.CD-16-0040. PMC   5448406 . PMID   27076371.
  12. Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. (November 2017). "Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy". Blood. 130 (21): 2295–2306. doi:10.1182/blood-2017-06-793141. PMC   5701525 . PMID   28924019.
  13. Barrett DM, et al. (2016). "Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function". Blood. 128 (22): 654. doi:10.1182/blood.V128.22.654.654.
  14. 1 2 Sentman ML, Murad JM, Cook WJ, Wu MR, Reder J, Baumeister SH, et al. (December 2016). "Mechanisms of Acute Toxicity in NKG2D Chimeric Antigen Receptor T Cell-Treated Mice". Journal of Immunology. 197 (12): 4674–4685. doi:10.4049/jimmunol.1600769. PMC   5136298 . PMID   27849169.
  15. 1 2 Drazen JM, Cecil RL, Goldman L, Bennett JC (2000). Cecil Textbook of Medicine (21st ed.). Philadelphia: W.B. Saunders. ISBN   978-0-7216-7996-9.
  16. Wadman M, Couzin-Frankel J, Kaiser J, Matacic C (April 2020). "A rampage through the body". Science. 368 (6489): 356–360. Bibcode:2020Sci...368..356W. doi: 10.1126/science.368.6489.356 . PMID   32327580. S2CID   216110951.
  17. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (March 2020). "The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality". International Journal of Antimicrobial Agents. 55 (5): 105954. doi:10.1016/j.ijantimicag.2020.105954. PMC   7118634 . PMID   32234467.
  18. Rezk SA, Zhao X, Weiss LM (September 2018). "Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update". Human Pathology. 79: 18–41. doi:10.1016/j.humpath.2018.05.020. PMID   29885408. S2CID   47010934.
  19. E. Göhring: Active Fever Therapy with MBV – Coley's Toxins: The Perfect Storm of Cytokines, Epubli, Berlin 2019, ISBN   978-3748530596.
  20. "Common Terminology Criteria for Adverse Events (CTCAE) Version v4.03" (PDF). National Institutes of Health and National Cancer Institute. June 14, 2010. p. 66. Archived from the original (PDF) on August 30, 2017. Retrieved October 16, 2017.
  21. "Guidance for Industry: Immunogenicity Assessment for Therapeutic Protein Products" (PDF). FDA. August 2014.
  22. Fletcher EA, Eltahir M, Lindqvist F, Rieth J, Törnqvist G, Leja-Jarblad J, Mangsbo SM (January 2018). "Extracorporeal human whole blood in motion, as a tool to predict first-infusion reactions and mechanism-of-action of immunotherapeutics". International Immunopharmacology. 54: 1–11. doi: 10.1016/j.intimp.2017.10.021 . PMID   29100032.
  23. Zelalem T, Charles B, Jason B, Christopher P, Claudia L, Colleen K, Vincent M, Robert O, Victoria C, William A, Cameron D, Dale C, Omar A, Gabrielle C, Andrew B (December 2021). "Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): a phase 3, randomised, placebo controlled trial". Lancet Respiratory Medicine. 9 (12): 237–246. doi:10.1016/S2213-2600(21)00494-X. PMC   8109186 . PMID   33972949.
  24. Temesgen, Zelalem; Burger, Charles; Baker, Jason; Polk, Christopher; Libertin, Claudia; Kelley, Colleen; Marconi, Vincent; Orenstein, Robert; Catterson, Victoria; Aronstein, William; Durrant, Cameron; Chappell, Dale; Chappell, Gabrielle; Ahmed, Omar; Badley, Andrew (2021). "C-Reactive Protein as a Biomarker for Improved Efficacy of Lenzilumab in Patients with Covid-19: Results from the Live-Air Trial". Chest. 160 (4): A2522–A2524. doi: 10.1016/j.chest.2021.08.029 . PMC   8503207 . S2CID   238585501.
  25. Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T (November 2008). "Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease". Blood. 112 (10): 3959–64. doi: 10.1182/blood-2008-05-155846 . PMID   18784373.
  26. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al. (August 2018). "Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia". Cancer Discovery. 8 (8): 958–971. doi:10.1158/2159-8290.CD-17-1319. PMC   6385599 . PMID   29880584.
  27. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. (February 2019). "GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts". Blood. 133 (7): 697–709. doi:10.1182/blood-2018-10-881722. PMC   6376281 . PMID   30463995.

PD-icon.svg This article incorporates public domain material from Common Terminology Criteria for Adverse Events (CTCAE) Version v4.03 (PDF). United States Department of Health and Human Services.