Monoclonal antibody | |
---|---|
Type | Whole antibody |
Source | Human |
Target | human colony stimulating factor 2 |
Clinical data | |
Other names | KB003 |
ATC code |
|
Identifiers | |
CAS Number | |
ChemSpider |
|
UNII | |
KEGG | |
Chemical and physical data | |
Formula | C6474H10024N1748O2010S42 |
Molar mass | 145852.15 g·mol−1 |
Lenzilumab (INN; development code KB003) [1] is a humanized monoclonal antibody (class IgG1 kappa) [2] that targets colony stimulating factor 2 (CSF2)/granulocyte-macrophage colony stimulating factor (GM-CSF).
Pre-clinical evidence and clinical data implicate GM-CSF as a crucial initiator in the systemic inflammatory pathway driving the serious and life-threatening chimeric antigen receptor T cell (CAR-T) associated cytokine release syndrome (CRS). GM-CSF is produced by CAR-T cells upon recognition of target cells, which activates myeloid cells and compels them to produce monocyte chemoattractant protein 1 (MCP-1) and its receptor (CCR2). [3] [4] GM-CSF knockout CAR-T cells protect mice from CRS; however, IL-6 knockout mice receiving wild-type CAR-T cells were not protected from CRS. [5] Moreover, mice infused with GM-CSF knockout CAR-T cells have significantly lower serum levels of MCP-1, IL-6, MIG, and MIP-1 than mice receiving wild-type CAR-T cells, demonstrating the role of GM-CSF signaling early in the inflammatory cascade. Administration of Lenzilumab in a patient-derived xenograft model significantly reduced CRS and neurotoxicity in mice, while preserving anti-leukemic efficacy. [6] A multi-center phase I/II trial including the MD Anderson Cancer Center will evaluate lenzilumab as prophylaxis for CRS and neurotoxicity in collaboration with Kite and is currently in recruitment. [7]
Additionally, GM-CSF has been shown to be instrumental in donor T-cell licensing of host and donor-derived myeloid cells in graft versus host disease (GVHD) following hematopoietic allotransplantation. [8] [9] Mice receiving allografts deficient in GM-CSF have significantly reduced incidence and severity of GVHD. [10] A Phase II study with the University of Zürich and the United Kingdom's Stem Cell Transplantation IMPACT group will be investigating the efficacy of lenzilumab in prevention of acute GVHD and is currently in active planning. [11]
In light of the recent coronavirus disease 2019 (COVID-19) pandemic, the role of GM-CSF in the cytokine-mediated immunopathology of lung injury and acute respiratory distress syndrome (ARDS) has been under investigation. Plasma of hospitalized patients with confirmed COVID-19 has elevated levels of several inflammatory cytokines including IL-1B, IL-2, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1A/B, TNFα, and VEGF, indicative of a cytokine storm. [12] Importantly, significantly higher levels of MCP-1, MIP-1A, and IP-10 (all of which are downstream of GM-CSF) were found to be significantly higher in ICU-admitted patients versus hospitalized but non-ICU admitted patients.[ citation needed ] A Phase III protocol for evaluating the efficacy of lenzilumab in the prevention and treatment of ARDS has been submitted to the FDA. [13]
Lenzilumab is under development by Humanigen Inc. and was originally designed for the treatment of chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML). [14] [15] [16] In vitro studies on human cells have demonstrated that Lenzilumab can induce sensitivity in myeloid and monocytic cells suggesting the antibody's applicability in CMML and JMML indications. [17] As of 2017, lenzilumab is currently undergoing clinical trials for CMML. [18] [19] Prior to application in treating CMML, lenzilumab was assessed for use in treating inadequately controlled asthma [20] and rheumatoid arthritis. [21]
The NIH has chosen lenzilumab for its ACTIV-5 Big Effect trial. [22] [23]
Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and monocyte-derived dendritic cells. As a part of the vertebrate innate immune system monocytes also influence adaptive immune responses and exert tissue repair functions. There are at least three subclasses of monocytes in human blood based on their phenotypic receptors.
In immunology, cytokine release syndrome (CRS) is a form of systemic inflammatory response syndrome (SIRS) that can be triggered by a variety of factors such as infections and certain drugs. It refers to cytokine storm syndromes (CSS) and occurs when large numbers of white blood cells are activated and release inflammatory cytokines, which in turn activate yet more white blood cells. CRS is also an adverse effect of some monoclonal antibody medications, as well as adoptive T-cell therapies. When occurring as a result of a medication, it is also known as an infusion reaction.
In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), also known as colony-stimulating factor 2 (CSF2), is a monomeric glycoprotein secreted by macrophages, T cells, mast cells, natural killer cells, endothelial cells and fibroblasts that functions as a cytokine. The pharmaceutical analogs of naturally occurring GM-CSF are called sargramostim and molgramostim.
Interleukin 3 (IL-3) is a protein that in humans is encoded by the IL3 gene localized on chromosome 5q31.1. Sometimes also called colony-stimulating factor, multi-CSF, mast cell growth factor, MULTI-CSF, MCGF; MGC79398, MGC79399: the protein contains 152 amino acids and its molecular weight is 17 kDa. IL-3 is produced as a monomer by activated T cells, monocytes/macrophages and stroma cells. The major function of IL-3 cytokine is to regulate the concentrations of various blood-cell types. It induces proliferation and differentiation in both early pluripotent stem cells and committed progenitors. It also has many more specific effects like the regeneration of platelets and potentially aids in early antibody isotype switching.
Azacitidine, sold under the brand name Vidaza among others, is a medication used for the treatment of myelodysplastic syndrome, myeloid leukemia, and juvenile myelomonocytic leukemia. It is a chemical analog of cytidine, a nucleoside in DNA and RNA. Azacitidine and its deoxy derivative, decitabine were first synthesized in Czechoslovakia as potential chemotherapeutic agents for cancer.
Tipifarnib is a farnesyltransferase inhibitor. Farnesyltransferase inhibitors block the activity of the farnesyltransferase enzyme by inhibiting prenylation of the CAAX tail motif, which ultimately prevents Ras from binding to the membrane, rendering it inactive.
Chronic myelomonocytic leukemia (CMML) is a type of leukemia, which are cancers of the blood-forming cells of the bone marrow. In adults, blood cells are formed in the bone marrow, by a process that is known as haematopoiesis. In CMML, there are increased numbers of monocytes and immature blood cells (blasts) in the peripheral blood and bone marrow, as well as abnormal looking cells (dysplasia) in at least one type of blood cell.
Decitabine, sold under the brand name Dacogen among others, acts as a nucleic acid synthesis inhibitor. It is a medication for the treatment of myelodysplastic syndromes, a class of conditions where certain blood cells are dysfunctional, and for acute myeloid leukemia (AML). Chemically, it is a cytidine analog.
Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).
Juvenile myelomonocytic leukemia (JMML) is a rare form of chronic leukemia that affects children, commonly those aged four and younger. The name JMML now encompasses all diagnoses formerly referred to as juvenile chronic myeloid leukemia (JCML), chronic myelomonocytic leukemia of infancy, and infantile monosomy 7 syndrome. The average age of patients at diagnosis is two (2) years old. The World Health Organization has included JMML as a subcategory of myelodysplastic and myeloproliferative disorders.
The granulocyte-macrophage colony-stimulating factor receptor, also known as CD116, is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In contrast to M-CSF and G-CSF which are lineage specific, GM-CSF and its receptor play a role in earlier stages of development. The receptor is primarily located on neutrophils, eosinophils and monocytes/macrophages, it is also on CD34+ progenitor cells (myeloblasts) and precursors for erythroid and megakaryocytic lineages, but only in the beginning of their development.
MN1 is a gene found on human chromosome 22, with gene map locus 22q12.3-qter. Its official full name is meningioma 1 because it is disrupted by a balanced translocation (4;22) in a meningioma.
Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.
Acute myelomonocytic leukemia (AMML) is a form of acute myeloid leukemia that involves a proliferation of CFU-GM myeloblasts and monoblasts. AMML occurs with a rapid increase amount in white blood cell count and is defined by more than 20% of myeloblast in the bone marrow. It is classified under "M4" in the French-American-British classification (FAB). It is classified under "AML, not otherwise classified" in the WHO classification.
Tet methylcytosine dioxygenase 2 (TET2) is a human gene. It resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies.
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage.
Microtransplantation (MST) is an advanced technology to treat malignant hematological diseases and tumors by infusing patients with granulocyte colony-stimulating factor (G-CSF) mobilized human leukocyte antigen (HLA)-mismatched allogeneic peripheral blood stem cells following a reduced-intensity chemotherapy or targeted therapy. The term "microtransplantation" comes from its mechanism of reaching donor cell microchimerism.
Guo Mei is a hematologist and associate director of 307th Hospital of Chinese People’s Liberation Army and deputy director of Radiation Research Institute.
AI-10-49 is a small molecule inhibitor of leukemic oncoprotein CBFβ-SMHHC developed by the laboratory of John Bushweller with efficacy demonstrated by the laboratories of Lucio H. Castilla and Monica Guzman. AI-10-49 allosterically binds to CBFβ-SMMHC and disrupts protein-protein interaction between CBFβ-SMMHC and tumor suppressor RUNX1. This inhibitor is under development as an anti-leukemic drug.