Anti-neurofascin demyelinating diseases

Last updated

Anti-neurofascin demyelinating diseases (anti-NF diseases) refers to health conditions engendered by auto-antibodies against neurofascins, which can produce both central and peripheral demyelination. Some cases of combined central and peripheral demyelination (CCPD) could be produced by them. [1] [ non-primary source needed ]

Contents

Current status

Whether ANFAs are part of a unique and emerging disease entity, disease modifiers, or inconsequential remains to be elucidated with time. [8] [9] Anti-neurofascin antibodies are found in multiple sclerosis, and chronic inflammatory demyelinating polyradiculoneuropathy. [10]

History

The first report about a subgroup of MS patients with anti-NF and contactin 2 auto-antibodies was published in 2011 [11]

Related Research Articles

<span class="mw-page-title-main">Acute disseminated encephalomyelitis</span> Autoimmune disease

Acute disseminated encephalomyelitis (ADEM), or acute demyelinating encephalomyelitis, is a rare autoimmune disease marked by a sudden, widespread attack of inflammation in the brain and spinal cord. As well as causing the brain and spinal cord to become inflamed, ADEM also attacks the nerves of the central nervous system and damages their myelin insulation, which, as a result, destroys the white matter. The cause is often a trigger such as from viral infection or vaccinations.

<span class="mw-page-title-main">Myelin</span> Fatty substance that surrounds nerve cell axons to insulate them and increase transmission speed

Myelin is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses pass along the axon. The myelinated axon can be likened to an electrical wire with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, myelin ensheaths the axon segmentally: in general, each axon is encased in multiple long sheaths with short gaps between, called nodes of Ranvier. At the nodes of Ranvier, which are approximately one thousandth of a mm in length, the axon's membrane is bare of myelin.

<span class="mw-page-title-main">Optic neuritis</span> Medical condition

Optic neuritis describes any condition that causes inflammation of the optic nerve; it may be associated with demyelinating diseases, or infectious or inflammatory processes.

<span class="mw-page-title-main">Multiple sclerosis</span> Disease that damages the myelin sheaths around nerves

Multiplesclerosis (MS) is an autoimmune disease in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This damage disrupts the ability of parts of the nervous system to transmit signals, resulting in a range of signs and symptoms, including physical, mental, and sometimes psychiatric problems. Specific symptoms can include double vision, vision loss, eye pain, muscle weakness, and loss of sensation or coordination. MS takes several forms, with new symptoms either occurring in isolated attacks or building up over time. In the relapsing forms of MS, between attacks, symptoms may disappear completely, although some permanent neurological problems often remain, especially as the disease advances. In the progressive forms of MS, bodily function slowly deteriorates and disability worsens once symptoms manifest and will steadily continue to do so if the disease is left untreated.

<span class="mw-page-title-main">Demyelinating disease</span> Any neurological disease in which the myelin sheath of neurons is damaged

A demyelinating disease refers to any disease affecting the nervous system where the myelin sheath surrounding neurons is damaged. This damage disrupts the transmission of signals through the affected nerves, resulting in a decrease in their conduction ability. Consequently, this reduction in conduction can lead to deficiencies in sensation, movement, cognition, or other functions depending on the nerves affected.

Neuromyelitis optica spectrum disorders (NMOSD), including neuromyelitis optica (NMO), are autoimmune diseases characterized by acute inflammation of the optic nerve and the spinal cord (myelitis). Episodes of ON and myelitis can be simultaneous or successive. A relapsing disease course is common, especially in untreated patients. In more than 80% of cases, NMO is caused by immunoglobulin G autoantibodies to aquaporin 4 (anti-AQP4), the most abundant water channel protein in the central nervous system. A subset of anti-AQP4-negative cases is associated with antibodies against myelin oligodendrocyte glycoprotein (anti-MOG). Rarely, NMO may occur in the context of other autoimmune diseases or infectious diseases. In some cases, the etiology remains unknown.

<span class="mw-page-title-main">Myelin oligodendrocyte glycoprotein</span>

Myelin oligodendrocyte glycoprotein (MOG) is a glycoprotein believed to be important in the myelination of nerves in the central nervous system (CNS). In humans this protein is encoded by the MOG gene. It is speculated to serve as a necessary "adhesion molecule" to provide structural integrity to the myelin sheath and is known to develop late on the oligodendrocyte.

Experimental autoimmune encephalomyelitis, sometimes experimental allergic encephalomyelitis (EAE), is an animal model of brain inflammation. It is an inflammatory demyelinating disease of the central nervous system (CNS). It is mostly used with rodents and is widely studied as an animal model of the human CNS demyelinating diseases, including multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM). EAE is also the prototype for T-cell-mediated autoimmune disease in general.

<span class="mw-page-title-main">Chronic inflammatory demyelinating polyneuropathy</span> Medical condition

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired autoimmune disease of the peripheral nervous system characterized by progressive weakness and impaired sensory function in the legs and arms. The disorder is sometimes called chronic relapsing polyneuropathy (CRP) or chronic inflammatory demyelinating polyradiculoneuropathy. CIDP is closely related to Guillain–Barré syndrome and it is considered the chronic counterpart of that acute disease. Its symptoms are also similar to progressive inflammatory neuropathy. It is one of several types of neuropathy.

<span class="mw-page-title-main">Aquaporin-4</span> Protein-coding gene in the species Homo sapiens

Aquaporin-4, also known as AQP-4, is a water channel protein encoded by the AQP4 gene in humans. AQP-4 belongs to the aquaporin family of integral membrane proteins that conduct water through the cell membrane. A limited number of aquaporins are found within the central nervous system (CNS): AQP1, 3, 4, 5, 8, 9, and 11, but more exclusive representation of AQP1, 4, and 9 are found in the brain and spinal cord. AQP4 shows the largest presence in the cerebellum and spinal cord grey matter. In the CNS, AQP4 is the most prevalent aquaporin channel, specifically located at the perimicrovessel astrocyte foot processes, glia limitans, and ependyma. In addition, this channel is commonly found facilitating water movement near cerebrospinal fluid and vasculature.

<span class="mw-page-title-main">Lesional demyelinations of the central nervous system</span>

Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.

Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) due to the unknown etiology of some of them, are a heterogenous group of demyelinating diseases - conditions that cause damage to myelin, the protective sheath of nerve fibers - that occur against the background of an acute or chronic inflammatory process. IDDs share characteristics with and are often grouped together under Multiple Sclerosis. They are sometimes considered different diseases from Multiple Sclerosis, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.

<span class="mw-page-title-main">Balo concentric sclerosis</span> Medical condition

Baló's concentric sclerosis is a disease in which the white matter of the brain appears damaged in concentric layers, leaving the axis cylinder intact. It was described by József Mátyás Baló who initially named it "leuko-encephalitis periaxialis concentrica" from the previous definition, and it is currently considered one of the borderline forms of multiple sclerosis.

<span class="mw-page-title-main">Marburg acute multiple sclerosis</span> Medical condition

Marburg acute multiple sclerosis, also known as Marburg multiple sclerosis or acute fulminant multiple sclerosis, is considered one of the multiple sclerosis borderline diseases, which is a collection of diseases classified by some as MS variants and by others as different diseases. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis, and Schilder's disease. The graver course is one form of malignant multiple sclerosis, with patients reaching a significant level of disability in less than five years from their first symptoms, often in a matter of months.

Research in multiple sclerosis may find new pathways to interact with the disease, improve function, curtail attacks, or limit the progression of the underlying disease. Many treatments already in clinical trials involve drugs that are used in other diseases or medications that have not been designed specifically for multiple sclerosis. There are also trials involving the combination of drugs that are already in use for multiple sclerosis. Finally, there are also many basic investigations that try to understand better the disease and in the future may help to find new treatments.

<span class="mw-page-title-main">Tumefactive multiple sclerosis</span> Medical condition

Tumefactive multiple sclerosis is a condition in which the central nervous system of a person has multiple demyelinating lesions with atypical characteristics for those of standard multiple sclerosis (MS). It is called tumefactive as the lesions are "tumor-like" and they mimic tumors clinically, radiologically and sometimes pathologically.

<span class="mw-page-title-main">Pathology of multiple sclerosis</span> Pathologic overview

Multiple sclerosis (MS) can be pathologically defined as the presence of distributed glial scars (scleroses) in the central nervous system that must show dissemination in time (DIT) and in space (DIS) to be considered MS lesions.

MOG antibody disease (MOGAD) or MOG antibody-associated encephalomyelitis (MOG-EM) is an inflammatory demyelinating disease of the central nervous system. Serum anti-myelin oligodendrocyte glycoprotein antibodies are present in up to half of patients with an acquired demyelinating syndrome and have been described in association with a range of phenotypic presentations, including acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, and neuromyelitis optica.

Anti-AQP4 diseases, are a group of diseases characterized by auto-antibodies against aquaporin 4.

Brenda Banwell is Chief of the Division of Neurology and Co-Director of the Neuroscience Center, and Professor of Neurology at Children's Hospital of Philadelphia and holder of the Grace R. Loeb Endowed Chair in Neurosciences. She also holds the title of Professor of Pediatrics and Neurology at the Perelman School of Medicine at the University of Pennsylvania.

References

  1. Ciron, Jonathan; Carra-Dallière, Clarisse; Ayrignac, Xavier; Neau, Jean-Philippe; Maubeuge, Nicolas; Labauge, Pierre (3 November 2018). "The coexistence of recurrent cerebral tumefactive demyelinating lesions with longitudinally extensive transverse myelitis and demyelinating neuropathy". Multiple Sclerosis and Related Disorders. 27: 223–225. doi:10.1016/j.msard.2018.11.002. ISSN   2211-0348. PMID   30414563. S2CID   53292167.
  2. 1 2 Kira, Jun-ichi; Yamasaki, Ryo; Ogata, Hidenori (2019-11-01). "Anti-neurofascin autoantibody and demyelination". Neurochemistry International. Emerging focus areas in Neuroimmunology. 130: 104360. doi: 10.1016/j.neuint.2018.12.011 . ISSN   0197-0186. PMID   30582947. S2CID   56595020.
  3. Jia, Kun; Zhang, Xu; Zhang, Lin-Jie; Li, Li-Min; Qi, Yuan; Yi, Ming; Zhang, Chao; Yang, Chun-Sheng; Yang, Li (16 January 2019). "Anti-neurofascin-155 antibody-positive neuromyelitis optica spectrum disorders". Journal of the Neurological Sciences. 398: 16–18. doi:10.1016/j.jns.2019.01.024. ISSN   0022-510X. PMID   30665067. S2CID   58636411.
  4. Stich O, Perera S, Berger B, Jarius S, Wildemann B, Baumgartner A, Rauer S (March 2016). "Prevalence of neurofascin-155 antibodies in patients with multiple sclerosis". Journal of the Neurological Sciences. 364: 29–32. doi:10.1016/j.jns.2016.03.004. PMID   27084211. S2CID   29204735.
  5. "Multiple Sclerosis Society Website - Welcome to the MS Society - lini…". archive.ph. 2007-06-21. Retrieved 2022-06-29.
  6. Goncalves, Marcus Vinicius Magno; Fragoso, Yara Dadalti (2019-04-08). "The involvement of anti-neurofascin 155 antibodies in central and peripheral demyelinating diseases". Neuroimmunology and Neuroinflammation. 6: 6. doi: 10.20517/2347-8659.2019.08 . ISSN   2347-8659. S2CID   146038130.
  7. Kawamura, Nobutoshi; Yamasaki, Ryo; Yonekawa, Tomomi; Matsushita, Takuya; Kusunoki, Susumu; Nagayama, Shigemi; Fukuda, Yasuo; Ogata, Hidenori; Matsuse, Dai; Murai, Hiroyuki; Kira, Jun-ichi (2013-08-20). "Anti-neurofascin antibody in patients with combined central and peripheral demyelination". Neurology. 81 (8): 714–722. doi:10.1212/WNL.0b013e3182a1aa9c. ISSN   0028-3878. PMID   23884033. S2CID   20359260.
  8. Gupta, N.; Shirani, A.; Arcot Jayagopal, L.; Piccione, E.; Hartman, E.; Zabad, R. K. (2022). "Anti-Neurofascin Antibodies Associated with White Matter Diseases of the Central Nervous System: A Red Flag or a Red Herring?". Brain Sciences. 12 (9): 1124. doi: 10.3390/brainsci12091124 . PMC   9497231 . PMID   36138860.
  9. Kira, Jun-ichi (January 22, 2021). "Anti-Neurofascin 155 Antibody-Positive Chronic Inflammatory Demyelinating Polyneuropathy/Combined Central and Peripheral Demyelination: Strategies for Diagnosis and Treatment Based on the Disease Mechanism". Frontiers in Neurology. 12. doi: 10.3389/fneur.2021.665136 . PMC   8222570 . PMID   34177770.
  10. Kira, Jun-ichi; Yamasaki, Ryo; Ogata, Hidenori (November 1, 2019). "Anti-neurofascin autoantibody and demyelination". Neurochemistry International. 130: 104360. doi:10.1016/j.neuint.2018.12.011. PMID   30582947 via ScienceDirect.
  11. Meinl, Edgar; Derfuss, Tobias; Krumbholz, Markus; Pröbstel, Anne-Katrin; Hohlfeld, Reinhard (6 September 2010). "Humoral autoimmunity in multiple sclerosis". Journal of the Neurological Sciences. 306 (1–2): 180–182. doi:10.1016/j.jns.2010.08.009. ISSN   0022-510X. PMID   20817206. S2CID   22349060.