Interleukin-5 receptor

Last updated
interleukin 5 receptor, alpha
Identifiers
Symbol IL5RA
Alt. symbolsIL5R
NCBI gene 3568
HGNC 6017
OMIM 147851
RefSeq NM_175725
UniProt Q01344
Other data
Locus Chr. 3 p26-p24
Search for
Structures Swiss-model
Domains InterPro
colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)
Identifiers
Symbol CSF2RB
Alt. symbolsIL3RB
NCBI gene 1439
HGNC 2436
OMIM 138981
RefSeq NM_000395
UniProt P32927
Other data
Locus Chr. 22 q12.2-13.1
Search for
Structures Swiss-model
Domains InterPro

The interleukin-5 receptor is a type I cytokine receptor. It is a heterodimer of the interleukin 5 receptor alpha subunit and CSF2RB. [1] [2]

Contents

The IL-5 receptor (IL-5R) belongs to the type I cytokine receptor family and is a heterodimer composed of two polypeptide chains, one α subunit, which binds IL-5 and confers upon the receptor cytokine specificity, and one β subunit, which contains the signal transduction domains.

α-subunit

The IL-5Rα chain is exclusively expressed by eosinophils, some basophils and murine B1 cells or B cell precursors. [3] Like many other cytokine receptors, alternative splicing of the α-chain gene results in expression of either a membrane bound or soluble form of the bα-chain. The soluble form does not lead to signal transduction and therefore has an antagonistic effect on IL-5 signaling. Both monomeric forms of IL-5Rα are low affinity receptors, while dimerization with the β-chain produces a high affinity receptor. [4] In either case, the α-chain exclusively binds IL-5 and the intra-cellular portion of IL-5Rα is associated with Janus kinase (JAK) 2, a protein tyrosine-kinase essential in IL-5 signal transduction. [5] [6]

β-subunit

The β-subunit of the IL-5 receptor is responsible for signal transduction and contains several intracellular signaling domains. Unlike the α-chain, the β-chain does not bind IL-5, is not specific to this cytokine, and is expressed on practically all leukocytes. In fact, the β-subunit of the IL-5 receptor is also found in IL-3 and GM-CSF receptors where it is associated with IL-3Rα and GM-CSFRα subunits respectively. [7] Therefore, it is known as the common β receptor or βc. As with the IL-5Rα subunit, the β subunit’s cytoplasmic domain is constitutively associated with JAK2, [8] as well as LYN, [9] another tyrosine kinase, which are both essential for IL-5 signal transduction. [10]

Drug target

Three monoclonal antibodies are available to target IL-5R. Benralizumab binds to IL-5Ra, while mepolizumab and reslizumab bind to IL-5, preventing it from binding to IL-5Ra.

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Interleukin 3</span> Protein-coding gene in the species Homo sapiens

Interleukin 3 (IL-3) is a protein that in humans is encoded by the IL3 gene localized on chromosome 5q31.1. Sometimes also called colony-stimulating factor, multi-CSF, mast cell growth factor, MULTI-CSF, MCGF; MGC79398, MGC79399: the protein contains 152 amino acids and its molecular weight is 17 kDa. IL-3 is produced as a monomer by activated T cells, monocytes/macrophages and stroma cells. The major function of IL-3 cytokine is to regulate the concentrations of various blood-cell types. It induces proliferation and differentiation in both early pluripotent stem cells and committed progenitors. It also has many more specific effects like the regeneration of platelets and potentially aids in early antibody isotype switching.

<span class="mw-page-title-main">T-cell receptor</span> Protein complex on the surface of T cells that recognises antigens

The T-cell receptor (TCR) is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerate: that is, many TCRs recognize the same antigen peptide and many antigen peptides are recognized by the same TCR.

Interleukin 5 (IL-5) is an interleukin produced by type-2 T helper cells and mast cells.

<span class="mw-page-title-main">Oncostatin M</span> Mammalian protein found in Homo sapiens

Oncostatin M, also known as OSM, is a protein that in humans is encoded by the OSM gene.

<span class="mw-page-title-main">IL-2 receptor</span> Lymphocyte receptor specific for Interleukin-2

The interleukin-2 receptor (IL-2R) is a heterotrimeric protein expressed on the surface of certain immune cells, such as lymphocytes, that binds and responds to a cytokine called IL-2.

<span class="mw-page-title-main">Interleukin 31</span>

Interleukin-31 (IL-31) is a protein that in humans is encoded by the IL31 gene that resides on chromosome 12. IL-31 is an inflammatory cytokine that helps trigger cell-mediated immunity against pathogens. It has also been identified as a major player in a number of chronic inflammatory diseases, including atopic dermatitis.

Type I cytokine receptors are transmembrane receptors expressed on the surface of cells that recognize and respond to cytokines with four α-helical strands. These receptors are also known under the name hemopoietin receptors, and share a common amino acid motif (WSXWS) in the extracellular portion adjacent to the cell membrane. Members of the type I cytokine receptor family comprise different chains, some of which are involved in ligand/cytokine interaction and others that are involved in signal transduction.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of tall cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">Tyrosine kinase 2</span> Enzyme and coding gene in humans

Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene.

<span class="mw-page-title-main">Janus kinase 2</span> Non-receptor tyrosine kinase and coding gene in humans

Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">Granulocyte-macrophage colony-stimulating factor receptor</span> Protein-coding gene in humans

The granulocyte-macrophage colony-stimulating factor receptor, also known as CD116, is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In contrast to M-CSF and G-CSF which are lineage specific, GM-CSF and its receptor play a role in earlier stages of development. The receptor is primarily located on neutrophils, eosinophils and monocytes/macrophages, it is also on CD34+ progenitor cells (myeloblasts) and precursors for erythroid and megakaryocytic lineages, but only in the beginning of their development.

<span class="mw-page-title-main">Interleukin 5 receptor alpha subunit</span> Protein-coding gene in the species Homo sapiens

Interleukin 5 receptor, alpha (IL5RA) also known as CD125 is a subunit of the Interleukin-5 receptor. IL5RA also denotes its human gene.

<span class="mw-page-title-main">Interleukin 12 receptor, beta 2 subunit</span> Protein-coding gene in the species Homo sapiens

Interleukin 12 receptor, beta 2 subunit is a subunit of the interleukin 12 receptor. IL12RB2 is its human gene. IL12RB2 orthologs have been identified in all mammals for which complete genome data are available.

<span class="mw-page-title-main">IL2RB</span> Protein-coding gene in the species Homo sapiens

Interleukin-2 receptor subunit beta is a protein that in humans is encoded by the IL2RB gene. Also known as CD122; IL15RB; P70-75.

<span class="mw-page-title-main">IL3RA</span> Human gene

Interleukin 3 receptor, alpha (IL3RA), also known as CD123, is a human gene.

The interleukin-13 receptor is a type I cytokine receptor, binding Interleukin-13. It consists of two subunits, encoded by IL13RA1 and IL4R, respectively. These two genes encode the proteins IL-13Rα1 and IL-4Rα. These form a dimer with IL-13 binding to the IL-13Rα1 chain and IL-4Rα stabilises this interaction. This IL-13 receptor can also instigate IL-4 signalling. In both cases this occurs via activation of the Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway, resulting in phosphorylation of STAT6. Phosphorylated STAT6 dimerises and acts as a transcription factor activating many genes, such as eotaxin.

Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.

<span class="mw-page-title-main">Cell surface receptor</span> Class of ligand activated receptors localized in surface of plama cell membrane

Cell surface receptors are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving extracellular molecules. They are specialized integral membrane proteins that allow communication between the cell and the extracellular space. The extracellular molecules may be hormones, neurotransmitters, cytokines, growth factors, cell adhesion molecules, or nutrients; they react with the receptor to induce changes in the metabolism and activity of a cell. In the process of signal transduction, ligand binding affects a cascading chemical change through the cell membrane.

References

  1. Takatsu K, Tominaga A (1991). "Interleukin 5 and its receptor". Prog. Growth Factor Res. 3 (2): 87–102. doi:10.1016/S0955-2235(05)80001-8. PMID   1773042.
  2. Murata Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K (1992). "Molecular cloning and expression of the human interleukin 5 receptor". J. Exp. Med. 175 (2): 341–51. doi:10.1084/jem.175.2.341. PMC   2119102 . PMID   1732409.
  3. Geijsen N, Koenderman L, Coffer PJ (March 2001). "Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family". Cytokine Growth Factor Rev. 12 (1): 19–25. doi:10.1016/S1359-6101(00)00019-8. PMID   11312115.
  4. Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G (September 1991). "A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF". Cell. 66 (6): 1175–84. doi:10.1016/0092-8674(91)90040-6. PMID   1833065. S2CID   54277241.
  5. Ogata N, Kouro T, Yamada A, Koike M, Hanai N, Ishikawa T, Takatsu K (April 1998). "JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor alpha and betac subunit, respectively, and are activated upon IL-5 stimulation". Blood. 91 (7): 2264–71. doi: 10.1182/blood.V91.7.2264 . PMID   9516124.
  6. Takaki S, Kanazawa H, Shiiba M, Takatsu K (November 1994). "A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction". Mol. Cell. Biol. 14 (11): 7404–13. doi:10.1128/mcb.14.11.7404. PMC   359275 . PMID   7935454.
  7. Martinez-Moczygemba M, Huston DP (October 2003). "Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF". J. Allergy Clin. Immunol. 112 (4): 653–65, quiz 666. doi:10.1016/j.jaci.2003.08.015. PMID   14564341.
  8. Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN (July 1994). "JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region". Mol. Cell. Biol. 14 (7): 4335–41. doi:10.1128/mcb.14.7.4335. PMC   358804 . PMID   8007942.
  9. Li Y, Shen BF, Karanes C, Sensenbrenner L, Chen B (August 1995). "Association between Lyn protein tyrosine kinase (p53/56lyn) and the beta subunit of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors in a GM-CSF-dependent human megakaryocytic leukemia cell line (M-07e)". J. Immunol. 155 (4): 2165–74. doi:10.4049/jimmunol.155.4.2165. PMID   7636265.
  10. Sato N, Sakamaki K, Terada N, Arai K, Miyajima A (November 1993). "Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling". EMBO J. 12 (11): 4181–9. doi:10.1002/j.1460-2075.1993.tb06102.x. PMC   413712 . PMID   8223433.