Interleukin-8 receptor

Last updated
Interleukin-8 Receptor, alpha
Identifiers
Symbol IL8RA
Alt. symbolsCMKAR1, CXCR1, CKR-1, CDw128a, CD181
Other data
Locus Chr. 2 q35
Interleukin-8 Receptor, beta
Identifiers
Symbol IL8RB
Alt. symbolsCXCR2, CKR-2, CDw128b
Other data
Locus Chr. 2 q35

Overview

The interleukin-8 receptors (IL-8R) are two 7-transmembrane proteins in the G-protein coupled-receptor family: [1] interleukin-8 receptor A (IL-8RA) and interleukin-8 receptor B (IL-8RB). These receptors are generally found on human neutrophils, a type of white blood cell of the myeloid lineage, with approximately 65,000 receptors per neutrophil. [1] Both receptors have a size of 60kDa, [2] are glycosylated (contains covalent attachments and modifications) and G-protein linked, and can cause an increase in intracellular Ca2+ levels. Binding of Interleukin 8 leads to activation of the cell (commonly a neutrophil), allowing it to recruit more white blood cells to the site of Interleukin 8 release and to produce enzymes that would assist in the destruction of foreign material at the site of infection [3] [4]

Contents

Structure

A ribbon-cartoon model of IL-8RA. IL-8RB is nearly identical in appearance. The N-terminus is located at the blue end of the ribbon and the C-terminus is at the red end. Interleukin-8 Receptor A.png
A ribbon-cartoon model of IL-8RA. IL-8RB is nearly identical in appearance. The N-terminus is located at the blue end of the ribbon and the C-terminus is at the red end.

IL-8 receptors are 7-transmembrane proteins; they contain 7 alpha helices that each span the thickness of the phospholipid bilayer of a cell membrane. IL-8RA is a peptide of 350 amino acids, and IL-8RB is composed of 355 amino acids. [2] Receptors A and B share 78% of their sequence identity, and are considered to be the only two biologically significant receptors of IL-8. [5] The genes for both receptors are located on chromosome 2q35 [5] and are each encoded by a single exon, and are 20 kb apart in distance. The close proximity and location of these two genes on the chromosome suggest that they are derived from the same ancestor sequence. [1] The reported size of the translated protein is approximately 40kD, [6] differing from the native purified receptors from the surface of neutrophils by 20kD. This difference could be due to the N-terminus glycosylations that occur post-translation and contribute to an increase in apparent size of the mature receptor. [6]

N-terminus activity

The amino terminus of the receptors is located on the extracellular side of the protein, and function to determine the binding specificity of ligands to the receptor. The N-terminus of both receptors A and B are rich in acidic residues, which correlate to their high binding affinities for IL-8, which is rich in basic residues. Asp11 on the N-terminus, Glu275 and Arg280 (both on the loop between the 7th and 6th transmembrane domains) are the three main peptide residues that participate in ligand binding on IL-8A. IL-8B shows a similar binding structure. [2] These three residues are brought close together via a disulfide bridge. [1]

C-terminus activity

The carboxyl terminus of the receptors is located on the intracellular side of the protein, and is rich in serine and threonine residues (a characteristic of many proteins of the 7-transmembrane G-protein coupled receptor family). The C-terminus is a target for phosphorylation and exhibits kinase activity. This is the beginning of signaling pathways and phosphorylation cascades to recruit neutrophils and angiogenesis, the development and growth of new blood vessels. [2]

Expression and function

A neutrophil in among a population of red blood cells. Neutrophils are the main target cells for IL-8, and contain a large number of IL-8 receptors on their cell surfaces. Binding causes a neutrophil to migrate to the site of infection. Neutrophil in a blood smear.jpg
A neutrophil in among a population of red blood cells. Neutrophils are the main target cells for IL-8, and contain a large number of IL-8 receptors on their cell surfaces. Binding causes a neutrophil to migrate to the site of infection.

Both IL-8RA and IL-8RB are expressed in neutrophils, monocytes, macrophages, basophils, T-lymphocytes, and endothelial cells. IL-8RB is expressed additionally in neurons of the central nervous system. IL-8RA is highly specific for interleukin-8 and only responds when this particular ligand is bound to its receptor site, exhibiting "specific" binding behavior. IL-8RB binds to IL-8 with the same affinity as IL-8RA, but also binds to neutrophil-activating protein 2 (NAP-2) and other small receptor molecules of the CXC chemokine family with lower affinity than IL-8 binding, exhibiting a "shared" binding behavior. [1] Chemokines are a class of small molecules that induce the recruitment of leukocytes and stimulate pro-inflammatory responses; the responsiveness of IL-8R to chemokines suggests that is heavily involved in recruitment of white blood cells for inflammatory and immunological response purposes. [4]

The binding of IL-8 to the receptor induces the following three main responses in neutrophils, all of which assist a neutrophil in developing molecular mechanisms to target and kill pathogens: shape and conformational change of the neutrophil (which allows for transendothelial migration of the cell), degranulation (causing the release of enzymes within the cell), and the dissociation of heterotrimeric G-proteins (a typical effect of ligands binding to 7TM G-protein coupled receptors), thereby activating them. [4] The activation of G-proteins leads to signal transduction and phosphorylation cascades, with the ultimate effect of changing gene expression of the neutrophil to allow for recruitment of other white blood cells to the local area. [3]

Related Research Articles

<span class="mw-page-title-main">G protein-coupled receptor</span> Class of cell surface receptors coupled to G-protein-associated intracellular signaling

G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.

Interleukins (ILs) are a group of cytokines that are expressed and secreted by white blood cells (leukocytes) as well as some other body cells. The human genome encodes more than 50 interleukins and related proteins.

<span class="mw-page-title-main">Chemokine</span> Small cytokines or signaling proteins secreted by cells

Chemokines, or chemotactic cytokines, are a family of small cytokines or signaling proteins secreted by cells that induce directional movement of leukocytes, as well as other cell types, including endothelial and epithelial cells. In addition to playing a major role in the activation of host immune responses, chemokines are important for biological processes, including morphogenesis and wound healing, as well as in the pathogenesis of diseases like cancers.

<span class="mw-page-title-main">Interleukin 8</span> Mammalian protein found in Homo sapiens

Interleukin 8 is a chemokine produced by macrophages and other cell types such as epithelial cells, airway smooth muscle cells and endothelial cells. Endothelial cells store IL-8 in their storage vesicles, the Weibel-Palade bodies. In humans, the interleukin-8 protein is encoded by the CXCL8 gene. IL-8 is initially produced as a precursor peptide of 99 amino acids which then undergoes cleavage to create several active IL-8 isoforms. In culture, a 72 amino acid peptide is the major form secreted by macrophages.

<span class="mw-page-title-main">Complement component 5a</span> Protein fragment

C5a is a protein fragment released from cleavage of complement component C5 by protease C5-convertase into C5a and C5b fragments. C5b is important in late events of the complement cascade, an orderly series of reactions which coordinates several basic defense mechanisms, including formation of the membrane attack complex (MAC), one of the most basic weapons of the innate immune system, formed as an automatic response to intrusions from foreign particles and microbial invaders. It essentially pokes microscopic pinholes in these foreign objects, causing loss of water and sometimes death. C5a, the other cleavage product of C5, acts as a highly inflammatory peptide, encouraging complement activation, formation of the MAC, attraction of innate immune cells, and histamine release involved in allergic responses. The origin of C5 is in the hepatocyte, but its synthesis can also be found in macrophages, where it may cause local increase of C5a. C5a is a chemotactic agent and an anaphylatoxin; it is essential in the innate immunity but it is also linked with the adaptive immunity. The increased production of C5a is connected with a number of inflammatory diseases.

<span class="mw-page-title-main">ICAM-1</span> Mammalian protein found in Homo sapiens

ICAM-1 also known as CD54 is a protein that in humans is encoded by the ICAM1 gene. This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by rhinovirus as a receptor for entry into respiratory epithelium.

<span class="mw-page-title-main">Oncostatin M</span> Mammalian protein found in Homo sapiens

Oncostatin M, also known as OSM, is a protein that in humans is encoded by the OSM gene.

<span class="mw-page-title-main">Chemokine receptor</span> Cytokine receptor

Chemokine receptors are cytokine receptors found on the surface of certain cells that interact with a type of cytokine called a chemokine. There have been 20 distinct chemokine receptors discovered in humans. Each has a rhodopsin-like 7-transmembrane (7TM) structure and couples to G-protein for signal transduction within a cell, making them members of a large protein family of G protein-coupled receptors. Following interaction with their specific chemokine ligands, chemokine receptors trigger a flux in intracellular calcium (Ca2+) ions (calcium signaling). This causes cell responses, including the onset of a process known as chemotaxis that traffics the cell to a desired location within the organism. Chemokine receptors are divided into different families, CXC chemokine receptors, CC chemokine receptors, CX3C chemokine receptors and XC chemokine receptors that correspond to the 4 distinct subfamilies of chemokines they bind. The four subfamilies of chemokines differ in the spacing of structurally important cysteine residues near the N-terminal of the chemokine.

Chemokine ligands 4 previously known as macrophage inflammatory protein (MIP-1β), is a protein which in humans is encoded by the CCL4 gene. CCL4 belongs to a cluster of genes located on 17q11-q21 of the chromosomal region. Identification and localization of the gene on the chromosome 17 was in 1990 although the discovery of MIP-1 was initiated in 1988 with the purification of a protein doublet corresponding to inflammatory activity from supernatant of endotoxin-stimulated murine macrophages. At that time, it was also named as "macrophage inflammatory protein-1" (MIP-1) due to its inflammatory properties.

The formyl peptide receptors (FPR) belong to a class of G protein-coupled receptors involved in chemotaxis. In humans, there are three formyl peptide receptor isoforms, each encoded by a separate gene that are named FPR1, FPR2, and FPR3. These receptors were originally identified by their ability to bind N-formyl peptides such as N-formylmethionine produced by the degradation of either bacterial or host cells. Hence formyl peptide receptors are involved in mediating immune cell response to infection. These receptors may also act to suppress the immune system under certain conditions. The close phylogenetic relation of signaling in chemotaxis and olfaction was recently proved by detection formyl peptide receptor like proteins as a distinct family of vomeronasal organ chemosensors in mice.

CXC chemokine receptors are integral membrane proteins that specifically bind and respond to cytokines of the CXC chemokine family. They represent one subfamily of chemokine receptors, a large family of G protein-linked receptors that are known as seven transmembrane (7-TM) proteins, since they span the cell membrane seven times. There are currently six known CXC chemokine receptors in mammals, named CXCR1 through CXCR6.

CC chemokine receptors are integral membrane proteins that specifically bind and respond to cytokines of the CC chemokine family. They represent one subfamily of chemokine receptors, a large family of G protein-linked receptors that are known as seven transmembrane (7-TM) proteins since they span the cell membrane seven times. To date, ten true members of the CC chemokine receptor subfamily have been described. These are named CCR1 to CCR10 according to the IUIS/WHO Subcommittee on Chemokine Nomenclature.

<span class="mw-page-title-main">Interleukin 8 receptor, beta</span> Mammalian protein found in Homo sapiens

Interleukin 8 receptor, beta is a chemokine receptor. IL8RB is also known as CXCR2, and CXCR2 is now the IUPHAR Committee on Receptor Nomenclature and Drug classification-recommended name.

<span class="mw-page-title-main">Interleukin 8 receptor, alpha</span> Mammalian protein found in Homo sapiens

Interleukin 8 receptor, alpha is a chemokine receptor. This name and the corresponding gene symbol IL8RA have been replaced by the HGNC approved name C-X-C motif chemokine receptor 1 and the approved symbol CXCR1. It has also been designated as CD181. The IUPHAR Committee on Receptor Nomenclature and Drug Classification use the HGNC recommended name, CXCR1.

<span class="mw-page-title-main">C-C chemokine receptor type 6</span> Mammalian protein found in Homo sapiens

Chemokine receptor 6 also known as CCR6 is a CC chemokine receptor protein which in humans is encoded by the CCR6 gene. CCR6 has also recently been designated CD196. The gene is located on the long arm of Chromosome 6 (6q27) on the Watson (plus) strand. It is 139,737 bases long and encodes a protein of 374 amino acids.

<span class="mw-page-title-main">Formyl peptide receptor 2</span> Protein-coding gene in the species Homo sapiens

N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.

<span class="mw-page-title-main">Coagulation factor II receptor</span> Mammalian protein found in humans

Proteinase-activated receptor 1 (PAR1) also known as protease-activated receptor 1 or coagulation factor II (thrombin) receptor is a protein that in humans is encoded by the F2R gene. PAR1 is a G protein-coupled receptor and one of four protease-activated receptors involved in the regulation of thrombotic response. Highly expressed in platelets and endothelial cells, PAR1 plays a key role in mediating the interplay between coagulation and inflammation, which is important in the pathogenesis of inflammatory and fibrotic lung diseases. It is also involved both in disruption and maintenance of endothelial barrier integrity, through interaction with either thrombin or activated protein C, respectively.

<span class="mw-page-title-main">IL3RA</span> Human gene

Interleukin 3 receptor, alpha (IL3RA), also known as CD123, is a human gene.

Members of the very wide interleukin-1 receptor (IL-1R) family are characterized by extracellular immunoglobulin-like domains and intracellular Toll/Interleukin-1R (TIR) domain. It is a group of structurally homologous proteins, conserved throughout the species as it was identified from plants to mammals. Proteins of this family play important role in host defence, injury and stress. There are four main groups of TIR domain-containing proteins in animals; Toll-like receptors, Interleukin-1 receptor (IL-1R), cytosolic adaptor proteins and insect and nematode Toll. Each of these groups is involved mainly in host defence; Toll receptors are also involved in embryogenesis.

Non-catalytic tyrosine-phosphorylated receptors (NTRs), also called immunoreceptors or Src-family kinase-dependent receptors, are a group of cell surface receptors expressed by leukocytes that are important for cell migration and the recognition of abnormal cells or structures and the initiation of an immune response. These transmembrane receptors are not grouped into the NTR family based on sequence homology, but because they share a conserved signalling pathway utilizing the same signalling motifs. A signaling cascade is initiated when the receptors bind their respective ligand resulting in cell activation. For that tyrosine residues in the cytoplasmic tail of the receptors have to be phosphorylated, hence the receptors are referred to as tyrosine-phosphorylated receptors. They are called non-catalytic receptors, as the receptors have no intrinsic tyrosine kinase activity and cannot phosphorylate their own tyrosine residues. Phosphorylation is mediated by additionally recruited kinases. A prominent member of this receptor family is the T-cell receptor.

References

  1. 1 2 3 4 5 Baggiolini M, Clark-Lewis I (1992-07-27). "Interleukin-8, a chemotactic and inflammatory cytokine". FEBS Letters. 307 (1): 97–101. doi: 10.1016/0014-5793(92)80909-z . ISSN   0014-5793. PMID   1639201. S2CID   10615150.
  2. 1 2 3 4 Horuk R (1994-04-01). "The interleukin-8-receptor family: from chemokines to malaria". Immunology Today. 15 (4): 169–174. doi:10.1016/0167-5699(94)90314-X. ISSN   0167-5699. PMID   8198708.
  3. 1 2 Beckmann MP, Gayle RB, Cerretti DP, March CJ, Srinivasan S, Sleath PR (1993). "Structural and Functional Characterization of the Interleukin-8 Receptors". The Chemokines. Advances in Experimental Medicine and Biology. Vol. 351. pp. 155–69. doi:10.1007/978-1-4615-2952-1_17. ISBN   978-0-306-44710-5. PMID   7942293.
  4. 1 2 3 Baggiolini M, Loetscher P, Moser B (1995). "Interleukin-8 and the chemokine family". Int. J. Immunopharmacol. 17 (2): 103–8. doi:10.1016/0192-0561(94)00088-6. PMID   7657403.
  5. 1 2 Brat DJ, Bellail AC, Van Meir EG (2017-05-25). "The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis". Neuro-Oncology. 7 (2): 122–133. doi:10.1215/S1152851704001061. ISSN   1522-8517. PMC   1871893 . PMID   15831231.
  6. 1 2 Holmes WE (1991). "Structure and Functional Expression of a Human Interleukin-8 Receptor". Science. 253 (5025): 1278–1280. Bibcode:1991Sci...253.1278H. doi:10.1126/science.1840701. PMID   1840701 via ProQuest.