C9 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | C9 , ARMD15, C9D, complement component 9, complement C9 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 120940; MGI: 1098282; HomoloGene: 74406; GeneCards: C9; OMA:C9 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Complement component 9 (C9) is a MACPF protein involved in the complement system, which is part of the innate immune system. [5] Once activated, about 12-18 molecules of C9 polymerize to form pores in target cell membranes, causing lysis and cell death. [6] C9 is one member of the complement membrane attack complex (MAC), which also includes complement components C5b, C6, C7 and C8. [7] [8] [9] The formation of the MAC occurs through three distinct pathways: the classical, alternative, and lectin pathways. [7] Pore formation by C9 is an important way that bacterial cells are killed during an infection, and the target cell is often covered in multiple MACs. The clinical impact of a deficiency in C9 is an infection with the gram-negative bacterium Neisseria meningitidis. [10]
C9 genes include 11 exons and 10 introns when found in fish. [11] In fish, the liver is the site where the majority of complement components are produced and expressed, but C9 can also be found in other tissues. [11] It is a single-chain glycoprotein with a four domain structure arranged in a globular bundle. [10] [11]
MAC formation starts with the assembly of a tetrameric complex with the complement components C6, C7, C8, and C5b. [12] The final step of MAC on target cell surfaces involves the polymerization of C9 molecules bound to C5b8 forming C5b-9. [8] [10] [11] C9 molecules allow cylindrical, asymmetrical transmembrane pores to form. The overall complex belongs to MAC/perforin-like (MACPF)/CDC superfamily. [6] Pore formation involves binding the C9 molecules to the target membrane, membrane molecules forming a pre-pore shape, and conformational change in the TMH1, the first transmembrane region, and TMH2, the second transmembrane region. [8] The formations of pores leads to the killing of foreign pathogens and infected host cells.
C9 was found to be the most strongly under expressed serum protein in men who achieved longevity, compared to men who did not. [13]
The complement system, also known as complement cascade, is a part of the humoral, innate immune system and enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and attack the pathogen's cell membrane. Despite being part of the innate immune system, the complement system can be recruited and brought into action by antibodies generated by the adaptive immune system.
Perforin-1 Perforin (PRF), encoded by the PRF1 gene, is a pore-forming toxic protein housed in the secretory granules of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Together, these cells are known as cytotoxic lymphocytes (CLs).
The classical complement pathway is one of three pathways which activate the complement system, which is part of the immune system. The classical complement pathway is initiated by antigen-antibody complexes with the antibody isotypes IgG and IgM.
The alternative pathway is a type of cascade reaction of the complement system and is a component of the innate immune system, a natural defense against infections.
The membrane attack complex (MAC) or terminal complement complex (TCC) is a complex of proteins typically formed on the surface of pathogen cell membranes as a result of the activation of the host's complement system, and as such is an effector of the immune system. Antibody-mediated complement activation leads to MAC deposition on the surface of infected cells. Assembly of the MAC leads to pores that disrupt the cell membrane of target cells, leading to cell lysis and death.
C5 convertase is an enzyme belonging to a family of serine proteases that play key role in the innate immunity. It participates in the complement system ending with cell death.
C5a is a protein fragment released from cleavage of complement component C5 by protease C5-convertase into C5a and C5b fragments. C5b is important in late events of the complement cascade, an orderly series of reactions which coordinates several basic defense mechanisms, including formation of the membrane attack complex (MAC), one of the most basic weapons of the innate immune system, formed as an automatic response to intrusions from foreign particles and microbial invaders. It essentially pokes microscopic pinholes in these foreign objects, causing loss of water and sometimes death. C5a, the other cleavage product of C5, acts as a highly inflammatory peptide, encouraging complement activation, formation of the MAC, attraction of innate immune cells, and histamine release involved in allergic responses. The origin of C5 is in the hepatocyte, but its synthesis can also be found in macrophages, where it may cause local increase of C5a. C5a is a chemotactic agent and an anaphylatoxin; it is essential in the innate immunity but it is also linked with the adaptive immunity. The increased production of C5a is connected with a number of inflammatory diseases.
CD11c, also known as Integrin, alpha X (ITGAX), is a gene that encodes for CD11c.
Complement component 5 is a protein that in humans is encoded by the C5 gene.
Pore-forming proteins are usually produced by bacteria, and include a number of protein exotoxins but may also be produced by other organisms such as apple snails that produce perivitellin-2 or earthworms, who produce lysenin. They are frequently cytotoxic, as they create unregulated pores in the membrane of targeted cells.
Hemolysins or haemolysins are lipids and proteins that cause lysis of red blood cells by disrupting the cell membrane. Although the lytic activity of some microbe-derived hemolysins on red blood cells may be of great importance for nutrient acquisition, many hemolysins produced by pathogens do not cause significant destruction of red blood cells during infection. However, hemolysins are often capable of lysing red blood cells in vitro.
C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization: tagging pathogens, immune complexes (antigen-antibody), and apoptotic cells for phagocytosis. Additionally, C3b plays a role in forming a C3 convertase when bound to Factor B, or a C5 convertase when bound to C4b and C2b or when an additional C3b molecule binds to the C3bBb complex.
CD59 glycoprotein, also known as MAC-inhibitory protein (MAC-IP), membrane inhibitor of reactive lysis (MIRL), or protectin, is a protein that in humans is encoded by the CD59 gene. It is an LU domain and belongs to the LY6/uPAR/alpha-neurotoxin protein family.
CD9 is a gene encoding a protein that is a member of the transmembrane 4 superfamily also known as the tetraspanin family. It is a cell surface glycoprotein that consists of four transmembrane regions and has two extracellular loops that contain disulfide bonds which are conserved throughout the tetraspanin family. Also containing distinct palmitoylation sites that allows CD9 to interact with lipids and other proteins.
The Membrane Attack Complex/Perforin (MACPF) superfamily, sometimes referred to as the MACPF/CDC superfamily, is named after a domain that is common to the membrane attack complex (MAC) proteins of the complement system and perforin (PF). Members of this protein family are pore-forming toxins (PFTs). In eukaryotes, MACPF proteins play a role in immunity and development.
Cluster of differentiation 97 is a protein also known as BL-Ac[F2] encoded by the ADGRE5 gene. CD97 is a member of the adhesion G protein-coupled receptor (GPCR) family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.
Signaling lymphocytic activation molecule 1 is a protein that in humans is encoded by the SLAMF1 gene. Recently SLAMF1 has also been designated CD150.
Cluster of Differentiation 276 (CD276) or B7 Homolog 3 (B7-H3) is a human protein encoded by the CD276 gene.
Tetherin, also known as bone marrow stromal antigen 2, is a lipid raft associated protein that in humans is encoded by the BST2 gene. In addition, tetherin has been designated as CD317. This protein is constitutively expressed in mature B cells, plasma cells and plasmacytoid dendritic cells, and in many other cells, it is only expressed as a response to stimuli from IFN pathway.
Piezo-type mechanosensitive ion channel component 1 is a protein that in humans is encoded by the PIEZO1 gene. PIEZO1 is a large mechanosensitive ion channel protein that forms a homotrimeric complex with a distinctive three-bladed, propeller-shaped architecture. Each subunit of PIEZO1 contains between 30 and 40 transmembrane domains. The protein consists of a central pore module and peripheral mechanotransduction modules. The pore module is composed of the last two transmembrane helices, an extracellular cap domain, and an intracellular C-terminal domain.