Complement component 2

Last updated
C2
Protein C2 PDB 2i6q.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases C2 , ARMD14, CO2, complement component 2, complement C2
External IDs OMIM: 613927 MGI: 88226 HomoloGene: 45 GeneCards: C2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_013484

RefSeq (protein)

NP_038512

Location (UCSC) Chr 6: 31.9 – 31.95 Mb Chr 17: 35.08 – 35.12 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Complement C2 is a protein that in humans is encoded by the C2 gene. [5] The protein encoded by this gene is part of the classical pathway of the complement system, acting as a multi-domain serine protease. Deficiency of C2 has been associated with certain autoimmune diseases. [5]

Contents

The Complement system is generated to regulate self protection from infection. The overall Complement system is composed of protein groups that collaborate in destroying foreign invaders, which ultimately remove debris from cells and tissues. When the body detects a foreign invader, the body signals the Complement system and the Complement component 2 protein attaches to Complement system 4 resulting in an immune response. Complement component 2 protein is critical for regulating the body's immune response.

Function

In the classical and lectin pathways of complement activation, formation of the C3-convertase and C5-convertases requires binding of C2 to an activated surface-bound C4b in the presence of Mg2+; the resultant C4bC2 complex is cleaved by C1s or MASP2 into C2a and C2b. It is thought that cleavage of C2 by C1s, while bound to C4b, results in a conformational rotation of C2b whereas the released C2a fragment may retain most of its original structure.

C2b is the smallest, enzymatically active, fragment of C3 convertase in this pathway, C4b2b (NB: some sources now refer to the larger fragment of C2 as C2b, making the C3 convertase C4b2b, whereas older sources refer to the larger fragment of C2 as C2a, making the C3 convertase C4b2a). The smaller fragment, C2a (or C2b, depending on the source) is released into the fluid phase. [6]

Complement Component 2 Deficiency

Complement C2 is a protein that in humans is encoded by the C2 gene. Protein C2 PDB 2i6q.png
Complement C2 is a protein that in humans is encoded by the C2 gene.

In the Molecular Biology, the deficiency of Complement Component 2 i s a disorder that causes a major effect in the immune system, resulting in a form of immunodeficiency. This effect results in an inability to protect the body against any foreign invader. Complement component 2 deficiency is also connected with an increased risk of developing autoimmune disorders, such as systemic vasculitis. Complement deficiencies is a challenge to understand due to insufficient clinical trails. Using a hemolytic-plaque assay, RNA extraction, and blot analysis, it is fair to note that complement component 2 deficiency is a result of pre-translational regulatory detect in C2 gene expression. [7] This detects a lack of synthesis within the C2 protein. This deficiency can be further understood by incorporating plasma protein deficiencies, especially those in tissue macrophages. It is also important to note that Complement component 2 deficiency can be caused by genetic and environmental factors. In genetic inheritance, Autosomal recessive conditions are inherited with mutations in both copies of the gene where parents of autosomal recessive condition typically do not show symptoms.

Development of SLE

Complement component 2 deficiency is associated with an increased risk of developing autoimmune disorders, with females more likely to have SLE. Systemic lupus erythematosus (lupus) is a chronic autoimmune disease that causes inflammation and tissue damage, affecting many parts of the body. Lupus can range from mild to severe and can cause inflammation in organs, such as joints, skin, kidneys, and brain. The severity of the disorder varies. C2 is an important component of both the classical and lectin pathways of complement activation, and is essential for first line defense against microbial infection. It binds to MBL or ficolins to form the C3 convertase C4b2a. In C2 deficiency, C3 is not efficiently cleaved, leading to limited deposition of C3 fragments on immune complexes and apoptotic cells, leading to chronic activation of the complement system.

Treatment and Management

Complement deficiency is managed on a case-by-case basis with antibiotics and regular visits with an immunologist. A form to treat complement component 2 deficiency includes replacing the missing component of the cascade, either through direct infusion of the protein or through gene therapy. Patients should be aware of symptoms of meningococcal infection and receive routine vaccinations. Patients should seek for accessible resources offered by the medical provider and take the necessary actions needed to treat for complement deficiency.

Patient Education

Patients and parents should be educated on the symptoms of serious illness and seek care immediately. Vaccination is an important preventive measure for the deficiency of complement component 2. Early diagnosis, antibiotic prophylaxis, and vaccinations can help prevent life-threatening infections in hereditary C2 deficiency.

Promoting Health Care Outcomes

The interprofessional team must be aware of the clinical features of patients with complement deficiency or immunodeficiency, and refer them to allergist/immunologists when necessary. Infection prevention and treatment of infections are key for complement deficiencies. [8] Patient organizations build public awareness and support research to improve patients' lives. Patient organizations provide access to information, resources, and support.

Clinical Significance

Photosensitive patients with C2 type I deficiency have poor prognosis. C2 type I deficiency is caused by a 28-base pair gene deletion, resulting in premature termination codon and lack of C2 protein. Patients with LE associated with complement C4 or C2 deficiencies have a better prognosis than those without inherited deficiencies. Complement component 2 deficiency increases risk of autoimmune disorders which may be managed by receiving the adequate care. Clinically, this is significant since Complement component 2 deficiency increases the risk of recurrent bacterial infections, which may be life-threatening.

Other Names

There are numerous forms of naming this gene. For example:

Related Research Articles

<span class="mw-page-title-main">Complement system</span> Part of the immune system that enhances the ability of antibodies and phagocytic cells

The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and attack the pathogen's cell membrane. It is part of the innate immune system, which is not adaptable and does not change during an individual's lifetime. The complement system can, however, be recruited and brought into action by antibodies generated by the adaptive immune system.

<span class="mw-page-title-main">Classical complement pathway</span> Aspect of the immune system

The classical complement pathway is one of three pathways which activate the complement system, which is part of the immune system. The classical complement pathway is initiated by antigen-antibody complexes with the antibody isotypes IgG and IgM.

<span class="mw-page-title-main">C3-convertase</span>

C3 convertase belongs to family of serine proteases and is necessary in innate immunity as a part of the complement system which eventuate in opsonisation of particles, release of inflammatory peptides, C5 convertase formation and cell lysis.

<span class="mw-page-title-main">Complement receptor 1</span> Protein found in humans

Complement receptor type 1 (CR1) also known as C3b/C4b receptor or CD35 is a protein that in humans is encoded by the CR1 gene.

<span class="mw-page-title-main">Complement component 3</span> Protein found in humans

Complement component 3, often simply called C3, is a protein of the immune system that is found primarily in the blood. It plays a central role in the complement system of vertebrate animals and contributes to innate immunity. In humans it is encoded on chromosome 19 by a gene called C3.

<span class="mw-page-title-main">C5-convertase</span> Serine protease that plays key role in innate immunity.

C5 convertase is an enzyme belonging to a family of serine proteases that play key role in the innate immunity. It participates in the complement system ending with cell death.

<span class="mw-page-title-main">Lectin pathway</span>

The lectin pathway or MBL pathway is a type of cascade reaction in the complement system, similar in structure to the classical complement pathway, in that, after activation, it proceeds through the action of C4 and C2 to produce activated complement proteins further down the cascade. In contrast to the classical complement pathway, the lectin pathway does not recognize an antibody bound to its target. The lectin pathway starts with mannose-binding lectin (MBL) or ficolin binding to certain sugars.

<span class="mw-page-title-main">MASP1 (protein)</span> Protein-coding gene in the species Homo sapiens

Mannan-binding lectin serine protease 1 also known as mannose-associated serine protease 1 (MASP-1) is an enzyme that in humans is encoded by the MASP1 gene.

<span class="mw-page-title-main">Factor D</span> Class of enzymes

Factor D is a protein which in humans is encoded by the CFD gene. Factor D is involved in the alternative complement pathway of the complement system where it cleaves factor B.

Complement component 4 (C4), in humans, is a protein involved in the intricate complement system, originating from the human leukocyte antigen (HLA) system. It serves a number of critical functions in immunity, tolerance, and autoimmunity with the other numerous components. Furthermore, it is a crucial factor in connecting the recognition pathways of the overall system instigated by antibody-antigen (Ab-Ag) complexes to the other effector proteins of the innate immune response. For example, the severity of a dysfunctional complement system can lead to fatal diseases and infections. Complex variations of it can also lead to schizophrenia. The C4 protein was thought to derive from a simple two-locus allelic model, which however has been replaced by a much more sophisticated multimodular RCCX gene complex model which contain long and short forms of the C4A or C4B genes usually in tandem RCCX cassettes with copy number variation, that somewhat parallels variation in the levels of their respective proteins within a population along with CYP21 in some cases depending on the number of cassettes and whether it contains the functional gene instead of pseudogenes or fragments. Originally defined in the context of the Chido/Rodgers blood group system, the C4A-C4B genetic model is under investigation for its possible role in schizophrenia risk and development.

<span class="mw-page-title-main">C3b</span>

C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization: tagging pathogens, immune complexes (antigen-antibody), and apoptotic cells for phagocytosis. Additionally, C3b plays a role in forming a C3 convertase when bound to Factor B, or a C5 convertase when bound to C4b and C2b or when an additional C3b molecule binds to the C3bBb complex.

<span class="mw-page-title-main">Complement deficiency</span> Medical condition

Complement deficiency is an immunodeficiency of absent or suboptimal functioning of one of the complement system proteins. Because of redundancies in the immune system, many complement disorders are never diagnosed. Some studies estimate that less than 10% are identified. Hypocomplementemia may be used more generally to refer to decreased complement levels, while secondary complement disorder means decreased complement levels that are not directly due to a genetic cause but secondary to another medical condition.

Barraquer–Simons syndrome is a rare form of lipodystrophy, which usually first affects the head, and then spreads to the thorax. It is named for Luis Barraquer Roviralta (1855–1928), a Spanish physician, and Arthur Simons (1879–1942), a German physician. Some evidence links it to LMNB2.

<span class="mw-page-title-main">C3a (complement)</span>

C3a is one of the proteins formed by the cleavage of complement component 3; the other is C3b. C3a is a 77 residue anaphylatoxin that binds to the C3a receptor (C3aR), a class A G protein-coupled receptor. It plays a large role in the immune response.

<span class="mw-page-title-main">Complement 2 deficiency</span> Medical condition

Complement 2 deficiency is a type of complement deficiency caused by any one of several different alterations in the structure of complement component 2.

<span class="mw-page-title-main">Lupus</span> Human autoimmune disease

Lupus, technically known as systemic lupus erythematosus (SLE), is an autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary among people and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, hair loss, mouth ulcers, swollen lymph nodes, feeling tired, and a red rash which is most commonly on the face. Often there are periods of illness, called flares, and periods of remission during which there are few symptoms.

<span class="mw-page-title-main">Complement 3 deficiency</span> Medical condition

Complement 3 deficiency is a genetic condition affecting complement component 3 (C3). People can suffer from either primary or secondary C3 deficiency. Primary C3 deficiency refers to an inherited autosomal-recessive disorder that involves mutations in the gene for C3. Secondary C3 deficiency results from a lack of factor I or factor H, two proteins that are key for the regulation of C3. Both primary and secondary C3 deficiency are characterized by low levels or absence of C3.

<span class="mw-page-title-main">Complement component 4B</span> Protein-coding gene in the species Homo sapiens

Complement component 4B (Chido blood group) is a kind of the Complement component 4 protein that in humans is encoded by the C4B gene.

The C1 complex is a protein complex involved in the complement system. It is the first component of the classical complement pathway and is composed of the subcomponents C1q, C1r and C1s.

RCCX is a complex, multiallelic, and tandem copy number variation (CNV) human DNA locus on chromosome 6p21.3, a cluster located in the major histocompatibility complex (MHC) class III region. CNVs are segments of DNA that vary in copy number compared to a reference genome and play a significant role in human phenotypic variation and disease development. The RCCX cluster consists of one or more modules each having a series of genes close to each other: serine/threonine kinase 19 (STK19), complement 4 (C4), steroid 21-hydroxylase (CYP21), and tenascin-X (TNX).

References

Citations

  1. 1 2 3 ENSG00000235017, ENSG00000235696, ENSG00000226560, ENSG00000204364, ENSG00000166278, ENSG00000231543 GRCh38: Ensembl release 89: ENSG00000206372, ENSG00000235017, ENSG00000235696, ENSG00000226560, ENSG00000204364, ENSG00000166278, ENSG00000231543 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024371 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: C2 complement component 2".
  6. Krishnan V, Xu Y, Macon K, Volanakis JE, Narayana SV (2009). "The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation". Acta Crystallographica D. 65 (Pt 3): 266–274. doi:10.1107/S0907444909000389. PMC   2651757 . PMID   19237749.
  7. Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Auto-antibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus (2011) 20:250–5. doi:10.1177/0961203310385738
  8. "Complement Deficiencies | Immune Deficiency Foundation".

Bibliography

  • Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore). 2005Jan;84(1):23-34. doi: 10.1097/01.md.0000152371.22747.1e. Citation on PubMed (https://pubmed.ncb%5B%5D i.nlm.nih.gov/15643297)
  • Complement+2 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006 Jan;43(1-2):78-85. doi: 10.1016/j.molimm.2005.06.025. PMID 16026838.
  • Wen L, Atkinson JP, Giclas PC. Clinical and laboratory evaluation of complement deficiency. J Allergy Clin Immunol. 2004 Apr;113(4):585-93; quiz 594. doi: 10.1016/j.jaci.2004.02.003. PMID 15100659.
  • Chen HH, Tsai LJ, Lee KR, Chen YM, Hung WT, Chen DY. Genetic association of complement component 2 polymorphism with systemic lupus erythematosus. Tissue Antigens. 2015 Aug;86(2):122-33. doi: 10.1111/tan.12602. Epub 2015 Jul 14. PMID 26176736.

Further reading