ING2

Last updated
ING2
Protein ING2 PDB 1wes.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ING2 , ING1L, p33inhibitor of growth family member 2
External IDs OMIM: 604215; MGI: 1916510; HomoloGene: 20388; GeneCards: ING2; OMA:ING2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001291959
NM_001564

NM_023503

RefSeq (protein)

NP_001278888
NP_001555

NP_075992

Location (UCSC) Chr 4: 183.51 – 183.51 Mb Chr 8: 48.12 – 48.13 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Inhibitor of growth protein 2 is a protein that in humans is encoded by the ING2 gene. [5] [6]

Contents

Function

This gene is a member of the inhibitor of growth (ING) family. Members of the ING family associate with and modulate the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes and function in DNA repair and apoptosis. [6]

Related Research Articles

<span class="mw-page-title-main">Tumor suppressor gene</span> Gene that inhibits expression of the tumorigenic phenotype

A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or reduction in its function. In combination with other genetic mutations, this could allow the cell to grow abnormally. The loss of function for these genes may be even more significant in the development of human cancers, compared to the activation of oncogenes.

<span class="mw-page-title-main">Jun dimerization protein</span> Protein-coding gene in the species Homo sapiens

Jun dimerization protein 2 (JUNDM2) is a protein that in humans is encoded by the JDP2 gene. The Jun dimerization protein is a member of the AP-1 family of transcription factors.

Histone deacetylase inhibitors are chemical compounds that inhibit histone deacetylases. Since deacetylation of histones produces transcriptionally silenced heterochromatin, HDIs can render chromatin more transcriptionally active and induce epigenomic changes.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">TP53BP1</span> Protein-coding gene in the species Homo sapiens

Tumor suppressor p53-binding protein 1 also known as p53-binding protein 1 or 53BP1 is a protein that in humans is encoded by the TP53BP1 gene.

<span class="mw-page-title-main">RBBP7</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP7 is a protein that in humans is encoded by the RBBP7 gene.

<span class="mw-page-title-main">KAT5</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT5 is an enzyme that in humans is encoded by the KAT5 gene. It is also commonly identified as TIP60.

<span class="mw-page-title-main">Protein SET</span> Protein-coding gene in the species Homo sapiens

Protein SET, also known as Protein SET 1, is a protein that in humans is encoded by the SET gene.

<span class="mw-page-title-main">ING1</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 1 is a protein that in humans is encoded by the ING1 gene.

<span class="mw-page-title-main">FOXO4</span> Protein

Forkhead box protein O4 is a protein that in humans is encoded by the FOXO4 gene.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">Sirtuin 2</span> Protein-coding gene in the species Homo sapiens

NAD-dependent deacetylase sirtuin 2 is an enzyme that in humans is encoded by the SIRT2 gene. SIRT2 is an NAD+ -dependent deacetylase. Studies of this protein have often been divergent, highlighting the dependence of pleiotropic effects of SIRT2 on cellular context. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Similar to other sirtuin family members, SIRT2 displays a ubiquitous distribution. SIRT2 is expressed in a wide range of tissues and organs and has been detected particularly in metabolically relevant tissues, including the brain, muscle, liver, testes, pancreas, kidney, and adipose tissue of mice. Of note, SIRT2 expression is much higher in the brain than all other organs studied, particularly in the cortex, striatum, hippocampus, and spinal cord.

<span class="mw-page-title-main">SAP30</span> Protein-coding gene in the species Homo sapiens

Sin3A-associated protein, 30kDa, also known as SAP30, is a protein which in humans is encoded by the SAP30 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">ING4</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 4 is a protein that in humans is encoded by the ING4 gene.

<span class="mw-page-title-main">ING3</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 3 is a protein that in humans is encoded by the ING3 gene.

<span class="mw-page-title-main">JADE1</span> Protein-coding gene in the species Homo sapiens

JADE1 is a protein that in humans is encoded by the JADE1 gene.

<span class="mw-page-title-main">ING5</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 5 is a protein that in humans is encoded by the ING5 gene.

<span class="mw-page-title-main">YPEL3</span> Protein-coding gene in humans

Yippee-like 3 (Drosophila) is a protein that in humans is encoded by the YPEL3 gene. YPEL3 has growth inhibitory effects in normal and tumor cell lines. One of five family members (YPEL1-5), YPEL3 was named in reference to its Drosophila melanogaster orthologue. Initially discovered in a gene expression profiling assay of p53 activated MCF7 cells, induction of YPEL3 has been shown to trigger permanent growth arrest or cellular senescence in certain human normal and tumor cell types. DNA methylation of a CpG island near the YPEL3 promoter as well as histone acetylation may represent possible epigenetic mechanisms leading to decreased gene expression in human tumors.

Protein acetylation are acetylation reactions that occur within living cells as drug metabolism, by enzymes in the liver and other organs. Pharmaceuticals frequently employ acetylation to enable such esters to cross the blood–brain barrier, where they are deacetylated by enzymes (carboxylesterases) in a manner similar to acetylcholine. Examples of acetylated pharmaceuticals are diacetylmorphine (heroin), acetylsalicylic acid (aspirin), THC-O-acetate, and diacerein. Conversely, drugs such as isoniazid are acetylated within the liver during drug metabolism. A drug that depends on such metabolic transformations in order to act is termed a prodrug.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000168556 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063049 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Shimada Y, Saito A, Suzuki M, Takahashi E, Horie M (Mar 1999). "Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor". Cytogenetics and Cell Genetics. 83 (3–4): 232–5. doi:10.1159/000015188 (inactive 2024-07-25). PMID   10072587. S2CID   7081905.{{cite journal}}: CS1 maint: DOI inactive as of July 2024 (link)
  6. 1 2 "Entrez Gene: ING2 inhibitor of growth family, member 2".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.