PRDM9

Last updated

PRDM9
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PRDM9 , MEISETZ, MSBP3, PFM6, PRMD9, ZNF899, PR domain 9, PR/SET domain 9, KMT8B
External IDs OMIM: 609760; MGI: 2384854; HomoloGene: 104139; GeneCards: PRDM9; OMA:PRDM9 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_020227
NM_001310214
NM_001376900

NM_144809
NM_001361436

RefSeq (protein)

NP_001297143
NP_064612
NP_001363829

NP_659058
NP_001348365

Location (UCSC) Chr 5: 23.44 – 23.53 Mb Chr 17: 15.54 – 15.56 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

PR domain [note 1] zinc finger protein 9 is a protein that in humans is encoded by the PRDM9 gene. [5] PRDM9 is responsible for positioning recombination hotspots during meiosis by binding a DNA sequence motif encoded in its zinc finger domain. [6] PRDM9 is the only speciation gene found so far in mammals, and is one of the fastest evolving genes in the genome. [7] [8]

Contents

Domain Architecture

Schematic of the PRDM9 Domain Architecture in mice PRDM9 Domain Architecture.png
Schematic of the PRDM9 Domain Architecture in mice

PRDM9 has multiple domains including KRAB domain, SSXRD, PR/SET domain (H3K4 & H3K36 trimethyltransferase), and an array of C2H2 Zinc Finger domains (DNA binding). [9]

History

In 1974 Jiri Forejt and P. Ivanyi identified a locus which they named Hst1 which controlled hybrid sterility. [10]

In 1982 a haplotype was identified controlling recombination rate wm7, [11] which would later be identified as PRDM9. [12]

In 1991 a protein binding to the minisatelite consensus sequence 5′-CCACCTGCCCACCTCT-3′ was detected and partially purified (named Msbp3 - minisatelite binding protein 3). [13] This would later turn out to be the same PRDM9 protein independently identified later. [14]

In 2005 a gene was identified (named Meisetz) that is required for progression through meiotic prophase and has H3K4 methyltransferase activity. [15]

In 2009 Jiri Forejt and colleagues identified Hst1 as Meisetz/PRDM9 - the first and so far only speciation gene in mammals. [16]

Later in 2009 PRDM9 was identified as one of the fastest evolving genes in the genome. [9] [17]

In 2010 three groups independently identified PRDM9 as controlling the positioning of recombination hotspots in humans and mice. [6] [18] [19] [20] [21]

in 2012 it was shown that almost all hotspots are positioned by PRDM9 and that in its absence hotspots form near promoters. [22]

In 2014 it was reported that the PRDM9 SET domain could also trimethylate H3K36 in vitro, [23] which was confirmed in vivo in 2016. [24]

In 2016 it was shown that the hybrid sterility caused by PRDM9 can be reversed and that the sterility is caused by asymmetric double strand breaks. [25] [26]

Function in Recombination

PRDM9 mediates the process of meiosis by directing the sites of homologous recombination. [27] In humans and mice, recombination does not occur evenly throughout the genome but at particular sites along the chromosomes called recombination hotspots. Hotspots are regions of DNA about 1–2kb in length. [28] There are approximately 30,000 to 50,000 hotspots within the human genome corresponding to one for every 50–100kb DNA on average. [28] In humans, the average number of crossover recombination events per hotspot is one per 1,300 meioses, and the most extreme hotspot has a crossover frequency of one per 110 meioses. [28] These hotspots are binding sites for the PRDM9 Zinc Finger array. [29] Upon binding to DNA, PRDM9 catalyzes trimethylation of Histone 3 at lysine 4 and lysine 36. [30] As a result, local nucleosomes are reorganized and through an unknown mechanism the recombination machinery is recruited to form double strand breaks.

Notes

  1. positive-regulatory domain

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164256 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000051977 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: PR domain containing 9".
  6. 1 2 Cheung VG, Sherman SL, Feingold E (February 2010). "Genetics. Genetic control of hotspots". Science. 327 (5967): 791–2. doi:10.1126/science.1187155. PMID   20150474. S2CID   206525444.
  7. "There are millions of different species worldwide. But how do new species first appear, and then remain separate?". royalsociety.org-gb. Retrieved 2017-12-10.
  8. Ponting CP (May 2011). "What are the genomic drivers of the rapid evolution of PRDM9?". Trends in Genetics. 27 (5): 165–71. doi:10.1016/j.tig.2011.02.001. PMID   21388701.
  9. 1 2 Thomas JH, Emerson RO, Shendure J (December 2009). "Extraordinary molecular evolution in the PRDM9 fertility gene". PLOS ONE. 4 (12): e8505. Bibcode:2009PLoSO...4.8505T. doi: 10.1371/journal.pone.0008505 . PMC   2794550 . PMID   20041164. Open Access logo PLoS transparent.svg
  10. Forejt J, Iványi P (1974). "Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.)". Genetical Research. 24 (2): 189–206. doi: 10.1017/S0016672300015214 . PMID   4452481.
  11. Shiroishi T, Sagai T, Moriwaki K (1982). "A new wild-derived H-2 haplotype enhancing K-IA recombination". Nature. 300 (5890): 370–2. Bibcode:1982Natur.300..370S. doi:10.1038/300370a0. PMID   6815537. S2CID   4370624.
  12. Kono H, Tamura M, Osada N, Suzuki H, Abe K, Moriwaki K, et al. (June 2014). "Prdm9 polymorphism unveils mouse evolutionary tracks". DNA Research. 21 (3): 315–26. doi:10.1093/dnares/dst059. PMC   4060951 . PMID   24449848.
  13. Wahls WP, Swenson G, Moore PD (June 1991). "Two hypervariable minisatellite DNA binding proteins". Nucleic Acids Research. 19 (12): 3269–74. doi:10.1093/nar/19.12.3269. PMC   328321 . PMID   2062643.
  14. Wahls WP, Davidson MK (November 2011). "DNA sequence-mediated, evolutionarily rapid redistribution of meiotic recombination hotspots". Genetics. 189 (3): 685–94. doi:10.1534/genetics.111.134130. PMC   3213376 . PMID   22084420.
  15. Hayashi K, Yoshida K, Matsui Y (November 2005). "A histone H3 methyltransferase controls epigenetic events required for meiotic prophase". Nature. 438 (7066): 374–8. Bibcode:2005Natur.438..374H. doi:10.1038/nature04112. PMID   16292313. S2CID   4412934.
  16. Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (January 2009). "A mouse speciation gene encodes a meiotic histone H3 methyltransferase". Science. 323 (5912): 373–5. Bibcode:2009Sci...323..373M. CiteSeerX   10.1.1.363.6020 . doi:10.1126/science.1163601. PMID   19074312. S2CID   1065925.
  17. Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, et al. (December 2009). "Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa". PLOS Genetics. 5 (12): e1000753. doi: 10.1371/journal.pgen.1000753 . PMC   2779102 . PMID   19997497.
  18. Neale MJ (2010-02-26). "PRDM9 points the zinc finger at meiotic recombination hotspots". Genome Biology. 11 (2): 104. doi: 10.1186/gb-2010-11-2-104 . PMC   2872867 . PMID   20210982.
  19. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, et al. (February 2010). "Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination". Science. 327 (5967): 876–9. Bibcode:2010Sci...327..876M. doi:10.1126/science.1182363. PMC   3828505 . PMID   20044541.
  20. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. (February 2010). "PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice". Science. 327 (5967): 836–40. Bibcode:2010Sci...327..836B. doi:10.1126/science.1183439. PMC   4295902 . PMID   20044539.
  21. Parvanov ED, Petkov PM, Paigen K (February 2010). "Prdm9 controls activation of mammalian recombination hotspots". Science. 327 (5967): 835. Bibcode:2010Sci...327..835P. doi:10.1126/science.1181495. PMC   2821451 . PMID   20044538.
  22. Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (May 2012). "Genetic recombination is directed away from functional genomic elements in mice". Nature. 485 (7400): 642–5. Bibcode:2012Natur.485..642B. doi:10.1038/nature11089. PMC   3367396 . PMID   22660327.
  23. Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, et al. (April 2014). "Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein". The Journal of Biological Chemistry. 289 (17): 12177–88. doi: 10.1074/jbc.M113.523183 . PMC   4002121 . PMID   24634223.
  24. Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K (June 2016). "The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo". PLOS Genetics. 12 (6): e1006146. doi: 10.1371/journal.pgen.1006146 . PMC   4928815 . PMID   27362481.
  25. Davies B, Hatton E, Altemose N, Hussin JG, Pratto F, Zhang G, et al. (February 2016). "Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice". Nature. 530 (7589): 171–176. Bibcode:2016Natur.530..171D. doi:10.1038/nature16931. PMC   4756437 . PMID   26840484.
  26. Forejt J (February 2016). "Genetics: Asymmetric breaks in DNA cause sterility". Nature. 530 (7589): 167–8. Bibcode:2016Natur.530..167F. doi: 10.1038/nature16870 . PMID   26840487.
  27. Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV (April 2011). "Genome-wide analysis reveals novel molecular features of mouse recombination hotspots". Nature. 472 (7343): 375–8. Bibcode:2011Natur.472..375S. doi:10.1038/nature09869. PMC   3117304 . PMID   21460839.
  28. 1 2 3 Myers S, Spencer CC, Auton A, Bottolo L, Freeman C, Donnelly P, et al. (August 2006). "The distribution and causes of meiotic recombination in the human genome". Biochemical Society Transactions. 34 (Pt 4): 526–30. doi:10.1042/BST0340526. PMID   16856851.
  29. de Massy B (November 2014). "Human genetics. Hidden features of human hotspots". Science. 346 (6211): 808–9. doi:10.1126/science.aaa0612. PMID   25395519. S2CID   195680901.
  30. Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K (June 2016). "The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo". PLOS Genetics. 12 (6): e1006146. doi: 10.1371/journal.pgen.1006146 . PMC   4928815 . PMID   27362481.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.