ARID1A

Last updated

ARID1A
Protein ARID1A PDB 1ryu.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ARID1A , B120, BAF250, BAF250a, BM029, C1orf4, ELD, MRD14, OSA1, P270, SMARCF1, hELD, hOSA1, CSS2, AT-rich interaction domain 1A
External IDs OMIM: 603024; MGI: 1935147; HomoloGene: 21216; GeneCards: ARID1A; OMA:ARID1A - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_139135
NM_006015
NM_018450

NM_001080819
NM_001363070

RefSeq (protein)

NP_006006
NP_624361

Location (UCSC) Chr 1: 26.69 – 26.78 Mb Chr 4: 133.68 – 133.76 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

AT-rich interactive domain-containing protein 1A is a protein that in humans is encoded by the ARID1A gene. [5] [6] [7]

Contents

Function

ARID1A is a member of the SWI/SNF family, whose members have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is required for transcriptional activation of genes normally repressed by chromatin. It possesses at least two conserved domains that could be important for its function. First, it has an ARID domain, which is a DNA-binding domain that can specifically bind an AT-rich DNA sequence known to be recognized by a SWI/SNF complex at the beta-globin locus. Second, the C-terminus of the protein can stimulate glucocorticoid receptor-dependent transcriptional activation. The protein encoded by this gene confers specificity to the SWI/SNF complex and recruits the complex to its targets through either protein-DNA or protein-protein interactions. [8] Two transcript variants encoding different isoforms have been found for this gene. [7]

Clinical significance

Gene encoding for ARID1A is the most frequently mutated SWI/SNF subunit across cancers. [9] This gene has been commonly found mutated in different cancers leading to loss of function, including gastric cancers, [10] colon cancer, [11] ovarian clear cell carcinoma, [12] liver cancer, [13] lymphoma [14] and pancreatic cancer. [15] In breast cancer distant metastases acquire inactivation mutations in ARID1A not seen in the primary tumor, and reduced ARID1A expression confers resistance to different drugs such as trastuzumab and mTOR inhibitors. These findings provide a rationale for why tumors accumulate ARID1A mutations. [16] [17]

Research

Lack of this gene/protein seems to protect rats from some types of liver damage. [18]

Interactions

ARID1A has been shown to interact with SMARCB1 [19] [20] and SMARCA4. [20] [21]

Related Research Articles

RSC is a member of the ATP-dependent chromatin remodeler family. The activity of the RSC complex allows for chromatin to be remodeled by altering the structure of the nucleosome.

<span class="mw-page-title-main">SWI/SNF</span> Subfamily of ATP-dependent chromatin remodeling complexes

In molecular biology, SWI/SNF, is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes, as well as other polypeptides. It possesses a DNA-stimulated ATPase activity that can destabilize histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial nucleosome rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, enabling binding of specific transcription factors, and allowing genes to be activated or repressed.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">POLR2A</span> Protein-coding gene in the species Homo sapiens

DNA-directed RNA polymerase II subunit RPB1, also known as RPB1, is an enzyme that is encoded by the POLR2A gene in humans.

<span class="mw-page-title-main">SMARCA4</span> Protein-coding gene in the species Homo sapiens

Transcription activator BRG1 also known as ATP-dependent chromatin remodeler SMARCA4 is a protein that in humans is encoded by the SMARCA4 gene.

<span class="mw-page-title-main">SMARCB1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 is a protein that in humans is encoded by the SMARCB1 gene.

<span class="mw-page-title-main">SMARCA2</span> Protein-coding gene in the species Homo sapiens

Probable global transcription activator SNF2L2 is a protein that in humans is encoded by the SMARCA2 gene.

<span class="mw-page-title-main">ACTL6A</span> Protein-coding gene in the species Homo sapiens

Actin-like protein 6A is a protein that in humans is encoded by the ACTL6A gene.

<span class="mw-page-title-main">SMARCC1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC1 is a protein that in humans is encoded by the SMARCC1 gene.

<span class="mw-page-title-main">SMARCE1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 is a protein that in humans is encoded by the SMARCE1 gene.

<span class="mw-page-title-main">SMARCC2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC2 is a protein that in humans is encoded by the SMARCC2 gene.

<span class="mw-page-title-main">ARID1B</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 1B is a protein that in humans is encoded by the ARID1B gene. ARID1B is a component of the human SWI/SNF chromatin remodeling complex.

<span class="mw-page-title-main">SMARCD1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 is a protein that in humans is encoded by the SMARCD1 gene.

<span class="mw-page-title-main">PBRM1</span> Protein-coding gene in the species Homo sapiens

Protein polybromo-1 (PB1) also known as BRG1-associated factor 180 (BAF180) is a protein that in humans is encoded by the PBRM1 gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">SMARCD3</span> Human protein and coding gene

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 is a protein that in humans is encoded by the SMARCD3 gene.

<span class="mw-page-title-main">SMARCD2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 is a protein that in humans is encoded by the SMARCD2 gene.

<span class="mw-page-title-main">ARID domain</span>

In molecular biology, the ARID domain ) is a protein domain that binds to DNA. ARID domain-containing proteins are found in fungi, plants and invertebrate and vertebrate metazoans. ARID-encoding genes are involved in a variety of biological processes including embryonic development, cell lineage gene regulation and cell cycle control. Although the specific roles of this domain and of ARID-containing proteins in transcriptional regulation are yet to be elucidated, they include both positive and negative transcriptional regulation and a likely involvement in the modification of chromatin structure. The basic structure of the ARID domain appears to be a series of six alpha-helices separated by beta-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. Based on primary sequence homology, they can be partitioned into three structural classes: Minimal ARID proteins that consist of a core domain formed by six alpha helices; ARID proteins that supplement the core domain with an N-terminal alpha-helix; and Extended-ARID proteins, which contain the core domain and additional alpha-helices at their N- and C-termini.

<span class="mw-page-title-main">Diana Hargreaves</span> American biologist

Diana Hargreaves is an American biologist and assistant professor at The Salk Institute for Biological Studies and member of The Salk Cancer Center. Her laboratory focuses on epigenetic regulation by the BAF (SWI/SNF) chromatin remodeling complexes in diverse physiological processes including development, immunity, and diseases such as cancer.

Robert E. Kingston is an American biochemist and geneticist who studies the functional and regulatory role nucleosomes play in gene expression, specifically during early development. After receiving his PhD (1981) and completing post-doctoral research, Kingston became an assistant professor at Massachusetts General Hospital (1985), where he started a research laboratory focused on understanding chromatin's structure with regards to transcriptional regulation. As a Harvard graduate himself, Kingston has served his alma mater through his leadership.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000117713 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000007880 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Takeuchi T, Furihata M, Heng HH, Sonobe H, Ohtsuki Y (June 1998). "Chromosomal mapping and expression of the human B120 gene". Gene. 213 (1–2): 189–193. doi:10.1016/S0378-1119(98)00194-2. PMID   9630625.
  6. Takeuchi T, Chen BK, Qiu Y, Sonobe H, Ohtsuki Y (December 1997). "Molecular cloning and expression of a novel human cDNA containing CAG repeats". Gene. 204 (1–2): 71–77. doi:10.1016/S0378-1119(97)00525-8. PMID   9434167.
  7. 1 2 "Entrez Gene: ARID1A AT rich interactive domain 1A (SWI-like)".
  8. Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, et al. (October 2023). "A disordered region controls cBAF activity via condensation and partner recruitment". Cell. 186 (22): 4936–4955.e26. doi:10.1016/j.cell.2023.08.032. PMC  10792396. PMID   37788668.
  9. Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR (November 2023). "Context-specific functions of chromatin remodellers in development and disease". Nature Reviews. Genetics. 25 (5): 340–361. doi:10.1038/s41576-023-00666-x. PMID   38001317.
  10. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, et al. (October 2011). "Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer". Nature Genetics. 43 (12): 1219–1223. doi:10.1038/ng.982. PMID   22037554. S2CID   8884065.
  11. Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, et al. (February 2017). "ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice". Nature Genetics. 49 (2): 296–302. doi:10.1038/ng.3744. PMC   5285448 . PMID   27941798.
  12. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. (October 2010). "ARID1A mutations in endometriosis-associated ovarian carcinomas". The New England Journal of Medicine. 363 (16): 1532–1543. doi:10.1056/NEJMoa1008433. PMC   2976679 . PMID   20942669.
  13. Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, et al. (November 2017). "Arid1a Has Context-Dependent Oncogenic and Tumor Suppressor Functions in Liver Cancer". Cancer Cell. 32 (5): 574–589.e6. doi:10.1016/j.ccell.2017.10.007. PMC   5728182 . PMID   29136504.
  14. Barisic D, Chin CR, Meydan C, Teater M, Tsialta I, Mlynarczyk C, et al. (March 2024). "ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis". Cancer Cell. 42 (4): 583–604.e11. doi:10.1016/j.ccell.2024.02.010. PMID   38458187.
  15. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, et al. (January 2012). "Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer". Proceedings of the National Academy of Sciences of the United States of America. 109 (5): E252–E259. Bibcode:2012PNAS..109E.252S. doi: 10.1073/pnas.1114817109 . PMC   3277150 . PMID   22233809.
  16. Berns K, Sonnenblick A, Gennissen A, Brohée S, Hijmans EM, Evers B, et al. (November 2016). "Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance". Clinical Cancer Research. 22 (21): 5238–5248. doi: 10.1158/1078-0432.CCR-15-2996 . PMID   27172896.
  17. Yates LR, Knappskog S, Wedge D, Farmery JH, Gonzalez S, Martincorena I, et al. (August 2017). "Genomic Evolution of Breast Cancer Metastasis and Relapse". Cancer Cell. 32 (2): 169–184.e7. doi:10.1016/j.ccell.2017.07.005. PMC   5559645 . PMID   28810143.
  18. "Tissue Regeneration Promoted through Gene Suppression". Genetic Engineering & Biotechnology News. March 2016.
  19. Kato H, Tjernberg A, Zhang W, Krutchinsky AN, An W, Takeuchi T, et al. (February 2002). "SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones". The Journal of Biological Chemistry. 277 (7): 5498–5505. doi: 10.1074/jbc.M108702200 . hdl: 2066/170683 . PMID   11734557.
  20. 1 2 Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, et al. (October 1996). "Purification and biochemical heterogeneity of the mammalian SWI-SNF complex". The EMBO Journal. 15 (19): 5370–5382. doi:10.1002/j.1460-2075.1996.tb00921.x. PMC   452280 . PMID   8895581.
  21. Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, et al. (November 1998). "Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling". Cell. 95 (5): 625–636. doi: 10.1016/S0092-8674(00)81633-5 . PMID   9845365. S2CID   3184211.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.