Mothers against decapentaplegic homolog 6

Last updated
SMAD6
Identifiers
Aliases SMAD6 , AOVD2, HsT17432, MADH6, MADH7, SMAD family member 6
External IDs OMIM: 602931 MGI: 1336883 HomoloGene: 4079 GeneCards: SMAD6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142861
NM_005585

NM_008542

RefSeq (protein)

NP_005576

NP_032568

Location (UCSC) Chr 15: 66.7 – 66.78 Mb Chr 9: 63.86 – 63.93 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SMAD family member 6, also known as SMAD6, is a protein that in humans is encoded by the SMAD6 gene. [5]

Contents

SMAD6 is a protein that, as its name describes, is a homolog of the Drosophila gene "mothers against decapentaplegic". It belongs to the SMAD family of proteins, which belong to the TGFβ superfamily of modulators. Like many other TGFβ family members SMAD6 is involved in cell signalling. It acts as a regulator of TGFβ family (such as bone morphogenetic proteins) activity by competing with SMAD4 and preventing the transcription of SMAD4's gene products. There are two known isoforms of this protein.

Nomenclature

The SMAD proteins are homologs of both the drosophila protein, mothers against decapentaplegic (MAD) and the C. elegans protein SMA. The name is a combination of the two. During Drosophila research, it was found that a mutation in the gene MAD in the mother repressed the gene decapentaplegic in the embryo. The phrase "Mothers against" was added as a humorous take-off on organizations opposing various issues e.g., Mothers Against Drunk Driving, or MADD; and based on a tradition of such unusual naming within the gene research community. [6]

Disease associations

Heterozygous, damaging mutations in SMAD6 are the most frequent genetic cause of non-syndromic craniosynostosis identified to date. [7]

Interactions

Mothers against decapentaplegic homolog 6 has been shown to interact with:


Related Research Articles

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 2 also known as SMAD family member 2 or SMAD2 is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 4</span> Mammalian protein found in Homo sapiens

SMAD4, also called SMAD family member 4, Mothers against decapentaplegic homolog 4, or DPC4 is a highly conserved protein present in all metazoans. It belongs to the SMAD family of transcription factor proteins, which act as mediators of TGF-β signal transduction. The TGFβ family of cytokines regulates critical processes during the lifecycle of metazoans, with important roles during embryo development, tissue homeostasis, regeneration, and immune regulation.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 7</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.

Smads comprise a family of structurally similar proteins that are the main signal transducers for receptors of the transforming growth factor beta (TGF-B) superfamily, which are critically important for regulating cell development and growth. The abbreviation refers to the homologies to the Caenorhabditis elegans SMA and MAD family of genes in Drosophila.

<span class="mw-page-title-main">BMPR1A</span> Bone morphogenetic protein receptor

The bone morphogenetic protein receptor, type IA also known as BMPR1A is a protein which in humans is encoded by the BMPR1A gene. BMPR1A has also been designated as CD292.

<span class="mw-page-title-main">ACVR1B</span> Protein-coding gene in humans

Activin receptor type-1B is a protein that in humans is encoded by the ACVR1B gene.

<span class="mw-page-title-main">TGFBR3</span> Protein-coding gene in the species Homo sapiens

Betaglycan also known as Transforming growth factor beta receptor III (TGFBR3), is a cell-surface chondroitin sulfate / heparan sulfate proteoglycan >300 kDa in molecular weight. Betaglycan binds to various members of the TGF-beta superfamily of ligands via its core protein, and bFGF via its heparan sulfate chains. TGFBR3 is the most widely expressed type of TGF-beta receptor. Its affinity towards all individual isoforms of TGF-beta is similarly high and therefore it plays an important role as a coreceptor mediating the binding of TGF-beta to its other receptors - specifically TGFBR2. The intrinsic kinase activity of this receptor has not yet been described. In regard of TGF-beta signalling it is generally considered a non-signaling receptor or a coreceptor. By binding to various member of the TGF-beta superfamily at the cell surface it acts as a reservoir of TGF-beta.

<span class="mw-page-title-main">TGF beta receptor 1</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor beta receptor I is a membrane-bound TGF beta receptor protein of the TGF-beta receptor family for the TGF beta superfamily of signaling ligands. TGFBR1 is its human gene.

<span class="mw-page-title-main">TGF beta receptor 2</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor, beta receptor II (70/80kDa) is a TGF beta receptor. TGFBR2 is its human gene.

<span class="mw-page-title-main">SKI protein</span> Protein-coding gene in the species Homo sapiens

The SKI protein is a nuclear proto-oncogene that is associated with tumors at high cellular concentrations. SKI has been shown to interfere with normal cellular functioning by both directly impeding expression of certain genes inside the nucleus of the cell as well as disrupting signaling proteins that activate genes.

<span class="mw-page-title-main">MAP3K7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">TFE3</span> Protein-coding gene in the species Homo sapiens

Transcription factor E3 is a protein that in humans is encoded by the TFE3 gene.

<span class="mw-page-title-main">Homeobox protein TGIF1</span> Protein found in humans

Homeobox protein TGIF1 is a protein that, in humans, is encoded by the TGIF1 gene. Alternative splicing has been observed at this locus and eight variants, encoding four distinct isoforms, are described.

<span class="mw-page-title-main">TAB1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 1 is an enzyme that in humans is encoded by the TAB1 gene.

<span class="mw-page-title-main">SKIL</span> Protein-coding gene in the species Homo sapiens

Ski-like protein is a protein that in humans is encoded by the SKIL gene.

<span class="mw-page-title-main">HOXC8</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-C8 is a protein that in humans is encoded by the HOXC8 gene.

<span class="mw-page-title-main">STRAP</span> Protein-coding gene in the species Homo sapiens

Serine-threonine kinase receptor-associated protein is an enzyme that in humans is encoded by the STRAP gene.

<span class="mw-page-title-main">SMURF2</span>

E3 ubiquitin-protein ligase SMURF2 is an enzyme that in humans is encoded by the SMURF2 gene which is located at chromosome 17q23.3-q24.1.

<span class="mw-page-title-main">KLF10</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 10 is a protein that in humans is encoded by the KLF10 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000137834 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036867 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SMAD6 SMAD family member 6".
  6. "Sonic Hedgehog, DICER, and the Problem With Naming Genes", Sep 26, 2014, Michael White. psmag.com
  7. Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. (September 2016). "BMP2 alleles". eLife. 5. doi: 10.7554/eLife.20125 . PMC   5045293 . PMID   27606499.
  8. Bai S, Shi X, Yang X, Cao X (March 2000). "Smad6 as a transcriptional corepressor". J. Biol. Chem. 275 (12): 8267–70. doi: 10.1074/jbc.275.12.8267 . PMID   10722652.
  9. Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (June 2000). "BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6". J. Biol. Chem. 275 (23): 17647–52. doi: 10.1074/jbc.M908622199 . PMID   10748100.
  10. Yanagisawa M, Nakashima K, Takeda K, Ochiai W, Takizawa T, Ueno M, Takizawa M, Shibuya H, Taga T (December 2001). "Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7". Genes Cells. 6 (12): 1091–9. doi: 10.1046/j.1365-2443.2001.00483.x . PMID   11737269. S2CID   25476125.
  11. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, Feeley R, Gimeno CJ, Woolf EA, Tayber O, Mays GG, Sampson BA, Schoen FJ, Gimbrone MA, Falb D (August 1997). "Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium". Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9314–9. Bibcode:1997PNAS...94.9314T. doi: 10.1073/pnas.94.17.9314 . PMC   23174 . PMID   9256479.
  12. Imoto S, Sugiyama K, Muromoto R, Sato N, Yamamoto T, Matsuda T (September 2003). "Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3". J. Biol. Chem. 278 (36): 34253–8. doi: 10.1074/jbc.M304961200 . hdl:2115/28123. PMID   12815042.
  13. Datta PK, Moses HL (May 2000). "STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling". Mol. Cell. Biol. 20 (9): 3157–67. doi:10.1128/MCB.20.9.3157-3167.2000. PMC   85610 . PMID   10757800.

Further reading