CFC1B | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CFC1B , entrez:653275, cripto, FRL-1, cryptic family 1B | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | MGI: 109448 HomoloGene: 50007 GeneCards: CFC1B | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Cripto is an EGF-CFC or epidermal growth factor-CFC, which is encoded by the Cryptic family 1 gene. [5] Cryptic family protein 1B is a protein that in humans is encoded by the CFC1B gene. [6] [7] Cryptic family protein 1B acts as a receptor for the TGF beta signaling pathway. It has been associated with the translation of an extracellular protein for this pathway. [5] The extracellular protein which Cripto encodes plays a crucial role in the development of left and right division of symmetry. [8]
Crypto is a glycosylphosphatidylinositol-anchored co-receptor that binds nodal and the activin type I ActRIB (ALK)-4 receptor (ALK4). [5] [9] [10]
Cripto is composed of two adjacent cysteine-rich motifs: the EGF-like and the CFC of an N-terminal signal peptide and of a C-terminal hydrophobic region attached by a GPI anchor, [11] which makes it a potentially essential element in the signaling pathway directing vertebrate embryo development. [12] NMR data confirm that the CFC domain has a C1-C4, C2-C6, C3-C5 disulfide pattern and show that structures are rather flexible and globally extended, with three non-canonical anti-parallel strands. [11]
In the Nodal signaling pathway of embryonic development, Cripto has been shown to have dual function as a co-receptor as well as ligand. Particularly in cell cultures, it has been shown to act as a signaling molecule with the capabilities of a growth factor, and in co-culture assays, it has displayed the property of a co-ligand to Nodal. Glycosylation is responsible for mediating this interface with Nodal. EGF-CFC proteins’ composition as a receptor complex is further solidified by the GPI linkage, making the cell membrane connection able to regulate growth factor signaling of Nodal. [5]
High concentrations of Cripto are found in both the trophoblast and inner cell mass, along the primitive streak as the second epithelial-mesenchymal transformation event occurs to form the mesoderm, and in the myocardium of the developing heart. Though no specific defect has been formally associated with mutations in Cripto, in vitro studies that disrupt gene function at various times during development have provided glimpses of possible malformations. For example, inactivation of Cripto during gastrulation disrupted the migration of newly formed mesenchymal mesoderm cells, resulting in the accumulation of cells around the primitive streak and eventual embryonic death. [13] Other results of Cripto disruption include the lack of posterior structures. [14] and a block on the differentiation of cardiac myocyte,. [15] both of which lead to embryonic death.
Cripto's functions have been hypothesized from these null mutation studies. It is now known that Cripto is similar to other morphogens originating from the primitive streak in that it is asymmetrically expressed, specifically in a proximal-distal gradient, [14] explaining the failure of posterior structures to form in the absence of Cripto.
The high expression of Cripto-1 was detected in many types of cancer such as pancreatic, breast and colon cancer. The high expression levels were linked to poor survival rate in cancer patients. Its role was suggested to be through promotion of epithelial-to-mesenchymal transition (EMT). The Wnt signaling pathway/β-catenin and TGF-B/Smad pathway was shown to control epithelial-to-mesenchymal transition in cancer. [16] [17] Recently, Cripto-1 was proposed as cancer stem cell marker.
CFC1B has oncogene potential [11] due to the tumor cell proliferation through initiation by autocrine or paracrine signaling. [5] Furthermore, the cryptic protein is highly over-expressed in many tumors [11] such as colorectal, gastric, breast, and pancreatic cancers in homosapiens. [5] Cripto is one of the key regulators of embryonic stem cells differentiation into cardiomyocyte vs. neuronal fate. [18] Expression levels of cripto are associated with resistance to EGFR inhibitors. [19]
Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.
In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.
The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
The epidermal growth factor receptor is a transmembrane protein that is a receptor for members of the epidermal growth factor family of extracellular protein ligands.
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.
T-box transcription factor T, also known as Brachyury protein, is encoded for in humans by the TBXT gene. Brachyury functions as a transcription factor within the T-box family of genes. Brachyury homologs have been found in all bilaterian animals that have been screened, as well as the freshwater cnidarian Hydra.
Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm located between the paraxial mesoderm and the lateral plate of the developing embryo. The intermediate mesoderm develops into vital parts of the urogenital system.
Lefty are a class of proteins that are closely related members of the TGF-beta superfamily of growth factors. These proteins are secreted and play a role in left-right asymmetry determination of organ systems during development. Mutations of the genes encoding these proteins have been associated with left-right axis malformations, particularly in the heart and lungs.
Mesenchyme is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo.
Transforming growth factor alpha (TGF-α) is a protein that in humans is encoded by the TGFA gene. As a member of the epidermal growth factor (EGF) family, TGF-α is a mitogenic polypeptide. The protein becomes activated when binding to receptors capable of protein kinase activity for cellular signaling.
Epiregulin (EPR) is a protein that in humans is encoded by the EREG gene.
SHC-transforming protein 1 is a protein that in humans is encoded by the SHC1 gene. SHC has been found to be important in the regulation of apoptosis and drug resistance in mammalian cells.
Zinc finger protein SNAI1 is a protein that in humans is encoded by the SNAI1 gene. Snail is a family of transcription factors that promote the repression of the adhesion molecule E-cadherin to regulate epithelial to mesenchymal transition (EMT) during embryonic development.
Teratocarcinoma-derived growth factor 1 is a protein that in humans is encoded by the TDGF1 gene. The protein is an extracellular, membrane-bound signaling protein that plays an essential role in embryonic development and tumor growth. Mutations in this gene are associated with forebrain defects. Pseudogenes of this gene are found on chromosomes 2, 3, 6, 8, 19 and X. Alternate splicing results in multiple transcript variants.
Fibroblast growth factor 10 is a protein that in humans is encoded by the FGF10 gene.
Nodal homolog is a secretory protein that in humans is encoded by the NODAL gene which is located on chromosome 10q22.1. It belongs to the transforming growth factor beta superfamily. Like many other members of this superfamily it is involved in cell differentiation in early embryogenesis, playing a key role in signal transfer from the primitive node, in the anterior primitive streak, to lateral plate mesoderm (LPM).
Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A), also known as ODIN, is a protein that in humans is encoded by the ANKS1A gene on chromosome 6.
EGF-like domain-containing protein 7 is a protein that in humans is encoded by the EGFL7 gene. Intron 7 of EGFL7 hosts the miR-126 microRNA gene.
The Nodal signaling pathway is a signal transduction pathway important in regional and cellular differentiation during embryonic development.
Cryptic protein, also cryptic family member 1 is a protein that in humans is encoded by the CFC1 gene.
{{cite journal}}
: CS1 maint: DOI inactive as of April 2024 (link)