GDF15

Last updated

GDF15
GDF15.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GDF15 , GDF-15, MIC-1, MIC1, NAG-1, PDF, PLAB, PTGFB, growth differentiation factor 15, TGF-PL
External IDs OMIM: 605312; MGI: 1346047; HomoloGene: 3576; GeneCards: GDF15; OMA:GDF15 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004864

NM_011819
NM_001330687

RefSeq (protein)

NP_004855

NP_001317616
NP_035949

Location (UCSC) Chr 19: 18.37 – 18.39 Mb Chr 8: 71.08 – 71.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Growth/differentiation factor 15 is a protein that in humans is encoded by the GDF15 gene. GDF15 was first identified as Macrophage inhibitory cytokine-1 or MIC-1. [5]

Contents

It is a protein belonging to the transforming growth factor beta superfamily. Under normal conditions, GDF15 is expressed in low concentrations in most organs and upregulated because of injury of organs such as liver, kidney, heart and lung. [6] [7] [8]

Function

The function of GDF15 is not fully clear but it seems to have a role in regulating inflammatory pathways and to be involved in regulating apoptosis, angiogenesis, cell repair and cell growth, which are biological processes observed in cardiovascular and neoplastic disorders. [6] [9] [10] [11]

Clinical significance

GDF15 has shown to be a strong prognostic protein in patients with different diseases such as heart diseases and cancer. [12] In cardiovascular tissues it is shown that GDF15 concentrations increase in response to atherosclerosis, ischemia/reperfusion injury and heart failure. [13] In patients with coronary artery disease (CAD), GDF15 is shown to be associated with adverse outcome such as mortality, myocardial infarction, stroke and with bleeding. [14]

However, elevated GDF15 levels in diseases such as cancer and heart disease may be the result of inflammation caused by these diseases. Note that GDF15 is necessary for surviving both bacterial and viral infections, as well as sepsis. The protective effects of GDF15 were largely independent of pathogen control or the magnitude of inflammatory response, suggesting a role in disease tolerance. [15]

Metformin was shown to cause increased levels of GDF15. This increase mediates the effect of body weight loss by metformin. [16] Further study has shown weight loss is promoted by maintaining energy expenditure in addition to appetite suppression. [17]

Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. [18]

In both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. [18]

Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake. [19]

Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. GDF15 plays a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model. [20]

It has been also associated as a causal factor in hyperemesis gravidarum, a severe form of morning sickness. [21]

Therapeutics development

GDF15 is being evaluated as a therapeutic target for treatment of cancer cachexia. In September 2024, Pfizer disclosed that the anti-GDF15 monoclonal antibody ponsegromab led to significant increases in body weight in patients with non-small cell lung cancer, pancreatic cancer, and colorectal cancer. [22] [23]

Related Research Articles

<span class="mw-page-title-main">Cachexia</span> Syndrome causing muscle loss not entirely reversible

Cachexia is a complex syndrome associated with an underlying illness, causing ongoing muscle loss that is not entirely reversed with nutritional supplementation. A range of diseases can cause cachexia, most commonly cancer, congestive heart failure, chronic obstructive pulmonary disease, chronic kidney disease, and AIDS. Systemic inflammation from these conditions can cause detrimental changes to metabolism and body composition. In contrast to weight loss from inadequate caloric intake, cachexia causes mostly muscle loss instead of fat loss. Diagnosis of cachexia can be difficult due to the lack of well-established diagnostic criteria. Cachexia can improve with treatment of the underlying illness but other treatment approaches have limited benefit. Cachexia is associated with increased mortality and poor quality of life.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in humans

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">Low-affinity nerve growth factor receptor</span> Human protein-coding gene

The p75 neurotrophin receptor (p75NTR) was first identified in 1973 as the low-affinity nerve growth factor receptor (LNGFR) before discovery that p75NTR bound other neurotrophins equally well as nerve growth factor. p75NTR is a neurotrophic factor receptor. Neurotrophic factor receptors bind Neurotrophins including Nerve growth factor, Neurotrophin-3, Brain-derived neurotrophic factor, and Neurotrophin-4. All neurotrophins bind to p75NTR. This also includes the immature pro-neurotrophin forms. Neurotrophic factor receptors, including p75NTR, are responsible for ensuring a proper density to target ratio of developing neurons, refining broader maps in development into precise connections. p75NTR is involved in pathways that promote neuronal survival and neuronal death.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">RANKL</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor kappa-Β ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF), is a protein that in humans is encoded by the TNFSF11 gene.

<span class="mw-page-title-main">Fas receptor</span> Protein found in humans

The Fas receptor, also known as Fas, FasR, apoptosis antigen 1, cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the FAS gene. Fas was first identified using a monoclonal antibody generated by immunizing mice with the FS-7 cell line. Thus, the name Fas is derived from FS-7-associated surface antigen.

Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in development.

<span class="mw-page-title-main">GDF2</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 2 (GDF2) also known as bone morphogenetic protein (BMP)-9 is a protein that in humans is encoded by the GDF2 gene. GDF2 belongs to the transforming growth factor beta superfamily.

<span class="mw-page-title-main">GDF3</span> Protein-coding gene in humans

Growth differentiation factor-3 (GDF3), also known as Vg-related gene 2 (Vgr-2) is protein that in humans is encoded by the GDF3 gene. GDF3 belongs to the transforming growth factor beta (TGF-β) superfamily. It has high similarity to other TGF-β superfamily members including Vg1 and GDF1.

<span class="mw-page-title-main">GDF5</span> Protein-coding gene in the species Homo sapiens

Growth/differentiation factor 5 is a protein that in humans is encoded by the GDF5 gene.

<span class="mw-page-title-main">GDF6</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 6 (GDF6) is a protein that in humans is encoded by the GDF6 gene.

<span class="mw-page-title-main">GDF7</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 7 (GDF7) is a protein that in humans is encoded by the GDF7 gene.

<span class="mw-page-title-main">GDF11</span> Protein-coding gene in humans

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP-11), is a protein that in humans is encoded by the growth differentiation factor 11 gene. GDF11 is a member of the Transforming growth factor beta family.

<span class="mw-page-title-main">Fibroblast growth factor receptor 3</span> Gene involved in the most common form of dwarfism

Fibroblast growth factor receptor 3 (FGFR-3) is a protein that in humans is encoded by the FGFR3 gene. FGFR3 has also been designated as CD333. The gene, which is located on chromosome 4, location p16.3, is expressed in tissues such as the cartilage, brain, intestine, and kidneys.

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

<span class="mw-page-title-main">Integrin beta 6</span> Protein-coding gene in the species Homo sapiens

Integrin beta-6 is a protein that in humans is encoded by the ITGB6 gene. It is the β6 subunit of the integrin αvβ6. Integrins are αβ heterodimeric glycoproteins which span the cell’s membrane, integrating the outside and inside of the cell. Integrins bind to specific extracellular proteins in the extracellular matrix or on other cells and subsequently transduce signals intracellularly to affect cell behaviour. One α and one β subunit associate non-covalently to form 24 unique integrins found in mammals. While some β integrin subunits partner with multiple α subunits, β6 associates exclusively with the αv subunit. Thus, the function of ITGB6 is entirely associated with the integrin αvβ6.

<span class="mw-page-title-main">TNFRSF12A</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 12A also known as the TWEAK receptor (TWEAKR) is a protein that in humans is encoded by the TNFRSF12A gene.

<span class="mw-page-title-main">DDIT4</span> Protein-coding gene in the species Homo sapiens

DNA-damage-inducible transcript 4 (DDIT4) protein also known as protein regulated in development and DNA damage response 1 (REDD1) is a protein that in humans is encoded by the DDIT4 gene.

<span class="mw-page-title-main">IL2RA</span> Mammalian protein found in Homo sapiens

The interleukin-2 receptor alpha chain is a protein involved in the assembly of the high-affinity interleukin-2 receptor, consisting of alpha (IL2RA), beta (IL2RB) and the common gamma chain (IL2RG). As the name indicates, this receptor interacts with interleukin-2, a pleiotropic cytokine which plays an important role in immune homeostasis.

Juven is a medical food that is manufactured by Abbott Laboratories and used to provide nutritional support under the care of a physician in individuals with muscle wasting due to AIDS or cancer, to promote wound healing following surgery or injury, or when otherwise recommended by a medical professional. It is a powdered nutritional supplement that contains 3 grams of calcium β-hydroxy β-methylbutyrate, 14 grams of L-arginine, and 14 grams of L-glutamine per two daily servings.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000130513 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038508 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, et al. (October 1997). "MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily". Proceedings of the National Academy of Sciences of the United States of America. 94 (21): 11514–11519. Bibcode:1997PNAS...9411514B. doi: 10.1073/pnas.94.21.11514 . PMC   23523 . PMID   9326641.
  6. 1 2 Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG (June 2005). "Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury". Shock. 23 (6): 543–548. PMID   15897808.
  7. Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ (May 2000). "Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury". Molecular and Cellular Biology. 20 (10): 3742–3751. doi:10.1128/MCB.20.10.3742-3751.2000. PMC   85678 . PMID   10779363.
  8. Ago T, Sadoshima J (February 2006). "GDF15, a cardioprotective TGF-beta superfamily protein". Circulation Research. 98 (3): 294–297. doi: 10.1161/01.RES.0000207919.83894.9d . PMID   16484622.
  9. Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, et al. (October 2007). "Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome". Circulation. 116 (14): 1540–1548. doi: 10.1161/CIRCULATIONAHA.107.697714 . PMID   17848615.
  10. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. (February 2006). "The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury". Circulation Research. 98 (3): 351–360. doi:10.1161/01.RES.0000202805.73038.48. PMID   16397141. S2CID   8401462.
  11. Rochette L, Méloux A, Zeller M, Cottin Y, Vergely C (August 2020). "Functional roles of GDF15 in modulating microenvironment to promote carcinogenesis". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1866 (8): 165798. doi:10.1016/j.bbadis.2020.165798. PMID   32304740. S2CID   215819153.
  12. Wallentin L, Zethelius B, Berglund L, Eggers KM, Lind L, Lindahl B, et al. (2013). "GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men". PLOS ONE. 8 (12): e78797. Bibcode:2013PLoSO...878797W. doi: 10.1371/journal.pone.0078797 . PMC   3846468 . PMID   24312445.
  13. Wollert KC, Kempf T, Wallentin L (2017-01-01). "Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease". Clinical Chemistry. 63 (1): 140–151. doi:10.1373/clinchem.2016.255174. ISSN   0009-9147. PMID   28062617.
  14. Hagström E, James SK, Bertilsson M, Becker RC, Himmelmann A, Husted S, et al. (2016-04-21). "Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study". European Heart Journal. 37 (16): 1325–1333. doi:10.1093/eurheartj/ehv491. ISSN   0195-668X. PMID   26417057.
  15. Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, et al. (August 2019). "GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance". Cell. 178 (5): 1231–1244.e11. doi:10.1016/j.cell.2019.07.033. PMC   6863354 . PMID   31402172.
  16. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, et al. (February 2020). "GDF15 mediates the effects of metformin on body weight and energy balance". Nature. 578 (7795): 444–448. doi:10.1038/s41586-019-1911-y. PMC   7234839 . PMID   31875646.
  17. Wang D, Townsend LK, DesOrmeaux GJ, Frangos SM, Batchuluun B, Dumont L, et al. (July 2023). "GDF15 promotes weight loss by enhancing energy expenditure in muscle". Nature. 619 (7968): 143–150. Bibcode:2023Natur.619..143W. doi:10.1038/s41586-023-06249-4. PMC   10322716 . PMID   37380764.
  18. 1 2 Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR (October 2021). "GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease". Nature Reviews. Endocrinology. 17 (10): 592–607. doi:10.1038/s41574-021-00529-7. PMID   34381196. S2CID   236972376.
  19. Wang D, Townsend LK, DesOrmeaux GJ, Frangos SM, Batchuluun B, Dumont L, et al. (July 2023). "GDF15 promotes weight loss by enhancing energy expenditure in muscle". Nature. 619 (7968): 143–150. Bibcode:2023Natur.619..143W. doi:10.1038/s41586-023-06249-4. PMC   10322716 . PMID   37380764.
  20. Wedel S, Martic I, Guerrero Navarro L, Ploner C, Pierer G, Jansen-Dürr P, et al. (January 2023). "Depletion of growth differentiation factor 15 (GDF15) leads to mitochondrial dysfunction and premature senescence in human dermal fibroblasts". Aging Cell. 22 (1): e13752. doi:10.1111/acel.13752. PMC   9835581 . PMID   36547021.
  21. Fejzo M, Rocha N, Cimino I, Lockhart SM, Petry CJ, Kay RG, et al. (2023). "GDF15 linked to maternal risk of nausea and vomiting during pregnancy". Nature. 625 (7996): 760–767. doi: 10.1038/s41586-023-06921-9 . PMC   10808057 . PMID   38092039. S2CID   266233306.
  22. "Pfizer Presents Positive Data from Phase 2 Study of Ponsegromab in Patients with Cancer Cachexia | Pfizer". www.pfizer.com. Retrieved 2024-10-28.
  23. Groarke JD, Crawford J, Collins SM, Lubaczewski S, Roeland EJ, Naito T, et al. (December 2024). "Ponsegromab for the Treatment of Cancer Cachexia". The New England Journal of Medicine. 391 (24): 2291–2303. doi:10.1056/NEJMoa2409515. PMID   39282907.