LY-2109761

Last updated
LY-2109761
LY-2109761 structure.png
Identifiers
  • 4-[2-[4-(2-pyridin-2-yl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)quinolin-7-yl]oxyethyl]morpholine
CAS Number
PubChem CID
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C26H27N5O2
Molar mass 441.535 g·mol−1
3D model (JSmol)
  • C1CC2=C(C(=NN2C1)C3=CC=CC=N3)C4=C5C=CC(=CC5=NC=C4)OCCN6CCOCC6
  • InChI=1S/C26H27N5O2/c1-2-9-27-22(4-1)26-25(24-5-3-11-31(24)29-26)21-8-10-28-23-18-19(6-7-20(21)23)33-17-14-30-12-15-32-16-13-30/h1-2,4,6-10,18H,3,5,11-17H2
  • Key:IHLVSLOZUHKNMQ-UHFFFAOYSA-N

LY-2109761 is a synthetic compound which acts as a potent and selective inhibitor for the growth factor receptor TGF beta receptor 1. It is used for research into conditions such as pulmonary fibrosis and cancer. [1] [2]

See also

Related Research Articles

<span class="mw-page-title-main">Tyrosine kinase</span> Enzyme

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

<span class="mw-page-title-main">Epidermal growth factor receptor</span> Transmembrane protein

The epidermal growth factor receptor is a transmembrane protein that is a receptor for members of the epidermal growth factor family of extracellular protein ligands.

<span class="mw-page-title-main">Hepatocyte growth factor receptor</span> Mammalian protein found in Homo sapiens

Hepatocyte growth factor receptor is a protein that in humans is encoded by the MET gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce the alpha and beta subunits, which are disulfide linked to form the mature receptor.

<span class="mw-page-title-main">Transforming growth factor beta</span> Cytokine

Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms and many other signaling proteins. TGFB proteins are produced by all white blood cell lineages.

<span class="mw-page-title-main">Insulin-like growth factor 1 receptor</span> Cell receptor protein found in humans

The insulin-like growth factor 1 (IGF-1) receptor is a protein found on the surface of human cells. It is a transmembrane receptor that is activated by a hormone called insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large class of tyrosine kinase receptors. This receptor mediates the effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an important role in growth and continues to have anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and other target tissues. Mice lacking the IGF-1 receptor die late in development, and show a dramatic reduction in body mass. This testifies to the strong growth-promoting effect of this receptor.

<span class="mw-page-title-main">Decorin</span> Protein-coding gene in humans

Decorin is a protein that in humans is encoded by the DCN gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 7</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.

Smads comprise a family of structurally similar proteins that are the main signal transducers for receptors of the transforming growth factor beta (TGF-B) superfamily, which are critically important for regulating cell development and growth. The abbreviation refers to the homologies to the Caenorhabditis elegans SMA and MAD family of genes in Drosophila.

The transforming growth factor beta (TGFβ) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, cell migration, apoptosis, cellular homeostasis and other cellular functions. The pathway is also involved in multiple physiological processes such as regulation of the immune system, the vascular system and embryonic development. The TGFβ signaling pathways are conserved. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.

<span class="mw-page-title-main">TGF beta 1</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.

<span class="mw-page-title-main">ACVR1C</span> Protein-coding gene in the species Homo sapiens

The activin A receptor also known as ACVR1C or ALK-7 is a protein that in humans is encoded by the ACVR1C gene. ACVR1C is a type I receptor for the TGFB family of signaling molecules.

<span class="mw-page-title-main">ACVR1B</span> Protein-coding gene in humans

Activin receptor type-1B is a protein that in humans is encoded by the ACVR1B gene.

<span class="mw-page-title-main">ACVR2A</span> Protein-coding gene in the species Homo sapiens

Activin receptor type-2A is a protein that in humans is encoded by the ACVR2A gene. ACVR2A is an activin type 2 receptor.

The activin type 2 receptors belong to a larger TGF-beta receptor family and modulate signals for transforming growth factor beta ligands. These receptors are involved in a host of physiological processes including, growth, cell differentiation, homeostasis, osteogenesis, apoptosis and many other functions. There are two activin type two receptors: ACVR2A and ACVR2B.

<span class="mw-page-title-main">Endoglin</span> Protein-coding gene in the species Homo sapiens

Endoglin (ENG) is a type I membrane glycoprotein located on cell surfaces and is part of the TGF beta receptor complex. It is also commonly referred to as CD105, END, FLJ41744, HHT1, ORW and ORW1. It has a crucial role in angiogenesis, therefore, making it an important protein for tumor growth, survival and metastasis of cancer cells to other locations in the body.

<span class="mw-page-title-main">Thrombospondin 1</span> Protein-coding gene in the species Homo sapiens

Thrombospondin 1, abbreviated as THBS1, is a protein that in humans is encoded by the THBS1 gene.

<span class="mw-page-title-main">Neuropilin</span> Protein receptor active in neurons

Neuropilin is a protein receptor active in neurons.

<span class="mw-page-title-main">ACVRL1</span> Protein-coding gene in humans

Serine/threonine-protein kinase receptor R3 is an enzyme that in humans is encoded by the ACVRL1 gene.

The transforming growth factor beta (TGFβ) receptors are a family of serine/threonine kinase receptors involved in TGF beta signaling pathway. These receptors bind growth factor and cytokine signaling proteins in the TGF-beta family such as TGFβs, bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs), activin and inhibin, myostatin, anti-Müllerian hormone (AMH), and NODAL.

References

  1. Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, et al. (April 2008). "LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis". Molecular Cancer Therapeutics. 7 (4): 829–840. doi:10.1158/1535-7163.MCT-07-0337. PMC   3088432 . PMID   18413796.
  2. Tan QY, Cheng ZS (2018). "TGFβ1-Smad Signaling Pathway Participates in Interleukin-33 Induced Epithelial-to-Mesenchymal Transition of A549 Cells". Cellular Physiology and Biochemistry. 50 (2): 757–767. doi: 10.1159/000494241 . PMID   30308508. S2CID   52966340.