Polycythemia vera

Last updated
Polycythemia vera
Other namesPolycythaemia vera (PV, PCV), erythremia, primary polycythemia, Vaquez disease, Osler-Vaquez disease, polycythemia rubra vera [1]
Polycythemia vera, blood smear.jpg
Blood smear from a patient with polycythemia vera
Specialty Oncology, hematology

In oncology, polycythemia vera (PV) is an uncommon myeloproliferative neoplasm in which the bone marrow makes too many red blood cells [1] . The majority of cases [2] are caused by mutations in the JAK2 gene, most commonly resulting in a single amino acid change in its protein product from valine to phenylalanine at position 617. [3]

Contents

Most of the health concerns associated with polycythemia vera are caused by the blood being thicker as a result of the increased red blood cells. It is more common in the elderly and may be symptomatic or asymptomatic. Common signs and symptoms include itching (pruritus), and severe burning pain in the hands or feet that is usually accompanied by a reddish or bluish coloration of the skin. Patients with polycythemia vera are more likely to have gouty arthritis. Treatment consists primarily of phlebotomy as well as oral chemotherapy and emerging treatments like long-acting interferon formulations.

Signs and symptoms

Erythromelalgia is a rare symptom of PV, here present in a patient with longstanding polycythemia vera. Note reddish limbs and swelling. Erythromelalgia.jpg
Erythromelalgia is a rare symptom of PV, here present in a patient with longstanding polycythemia vera. Note reddish limbs and swelling.

People with polycythemia vera can be asymptomatic. [4] Clinical symptoms of polycythemia vera are mostly due to hyperviscosity of blood. A classic symptom of polycythemia vera is pruritus or itching, particularly after exposure to warm water (such as when taking a bath), [5] which may be due to abnormal histamine release [6] [7] or prostaglandin production. [8] Such itching is present in approximately 40% of patients with polycythemia vera. [9] Gouty arthritis may be present in up to 20% of patients. [9] Peptic ulcer disease is also common in patients with polycythemia vera; most likely due to increased histamine from mast cells, but may be related to an increased susceptibility to infection with the ulcer-causing bacterium H. pylori . [10]

A classic symptom of polycythemia vera (and the related myeloproliferative disease essential thrombocythemia) is erythromelalgia. [11] This is a burning pain in the hands or feet, usually accompanied by a reddish or bluish coloration of the skin. Erythromelalgia is caused by an increased platelet count or increased platelet "stickiness" (aggregation), resulting in the formation of tiny blood clots in the vessels of the extremity; it responds rapidly to treatment with aspirin. [12] [13] Splenomegaly may cause the spleen to be palpable in some patients, which has been reported by Lee et al. (2022) to be associated with both the V617F mutation and the development of myelofibrosis. [14]

Pathophysiology

Polycythemia vera (PV), being a primary polycythemia (increase in the fraction of volume occupied by red cells in the blood), is caused by neoplastic proliferation and maturation of erythroid, megakaryocytic and granulocytic elements to produce what is referred to as panmyelosis. In contrast to secondary polycythemias, PV is associated with a low serum level of the hormone erythropoietin (EPO). Instead, PV cells often carry activating mutation in a tyrosine kinase–encoding gene, JAK2 , which acts in signaling pathways of the EPO receptor, making those cells proliferate independently from EPO. [15] [ page needed ]

Diagnosis

Diagnostic criteria for polycythemia vera were modified by the World Health Organisation in 2016. [16] The WHO criteria for polycythemia vera are specifically outlined in Table 4, and emphasis is given to accurate histological observations as proven predictors in the prognosis of the disease.

As summarized by Verstovek following the 2016 European Hematology Association Congress, [17] there are 3 major criteria for PV diagnosis:

  1. The first is a very high red blood cell count, which is usually identified by elevated levels of hemoglobin or hematocrit;
  2. A bone marrow biopsy that shows hypercellularity and abnormalities in megakaryocytes; and
  3. The presence of a mutation in the Janus kinase 2 (JAK2) gene.

Patients usually have a very low level of erythropoietin, a growth factor that increases the production of red blood cells, which may be considered a minor diagnostic feature.

A mutation in the JAK2 kinase (V617F) is strongly associated with polycythemia vera. [18] [19] While it is a JAK2 V617F mutation in 95% of patients, JAK2 exon 12 mutations have also been observed. [20] The V617F mutation is not inherited, but develops as a somatic mutation in the erythroid progenitor cells. [21] Some patients may lose the normal allele in the diseased cells entirely together with the short arm of chromosome 9 (9p), likely due to mitotic recombination causing copy-neutral loss of heterozygosity. [22] While the JAK2 V617F mutation is generally sporadic (random), a certain inherited haplotype of JAK2 has been associated with its development. [23] [24]

People with untreated polycythemia vera have a substantial risk of Budd-Chiari syndrome (hepatic vein thrombosis). [25]

Treatment

Untreated, polycythemia vera can be fatal, with the median survival in patients being 1.5-3 years. [26] [27] [28] Data on the effect of life-span of an individual with treated polycythemia vera is inconclusive due to the rarity of the disease. Studies show the median survival rate of controlled Polycythemia Vera ranges from 10 to 20 years; however, most observations are of people diagnosed in their 60s. Patients live close to a normal life expectancy. [29]

Frequent blood withdrawals (phlebotomy) are one form of treatment, which often may be combined with other therapies. The removal of blood from the body induces iron deficiency, thereby decreasing the hemoglobin / hematocrit level, and reducing the risk of blood clots. Phlebotomy is typically performed to bring their hematocrit (red blood cell percentage) down below 45 for men or 42 for women. [30] It has been observed that phlebotomy also reduces cognitive impairment. [31]

Medications are also used which reduce the number of red blood cells. These include hydroxyurea and interferon therapy, among others. [32] The tendency of some practitioners to avoid chemotherapy if possible, especially in young patients, is a result of research indicating possible increased risk of transformation to acute myelogenous leukemia (AML). While hydroxyurea is considered a safer chemotherapy in this aspect, there is still some debate about its long-term safety. [33]

There are indications that the lung cancer drug erlotinib may be an additional treatment option for those with certain genetic markers. [34]

Ruxolitinib (brand name Jakafi), a Janus kinase 2 (JAK2) inhibitor, is also used to treat polycythemia. [35]

Ropeginterferon alfa-2b (Besremi) was approved for medical use in the European Union in February 2019, [36] and in the United States in November 2021. [37] [38] Ropeginterferon alfa-2b is the first medication approved by the U.S. Food and Drug Administration (FDA) to treat polycythemia vera that people can take regardless of their treatment history, and the first interferon therapy specifically approved for polycythemia vera. [37] Interferon alfa-2b is also used. [32]

Epidemiology

Polycythemia vera occurs in all age groups, [39] although the incidence increases with age. One study found the median age at diagnosis to be 60 years, [9] while a Mayo Clinic study in Olmsted County, Minnesota found that the highest incidence was in people aged 70–79 years. [40] The overall incidence in the Minnesota population was 1.9 per 100,000 person-years, and the disease was more common in men than women. [40] A cluster around a toxic site was confirmed in northeast Pennsylvania in 2008. [41]

Notable deaths

Related Research Articles

Janus kinase (JAK) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. They were initially named "just another kinase" 1 and 2, but were ultimately published as "Janus kinase". The name is taken from the two-faced Roman god of beginnings, endings and duality, Janus, because the JAKs possess two near-identical phosphate-transferring domains. One domain exhibits the kinase activity, while the other negatively regulates the kinase activity of the first.

<span class="mw-page-title-main">Polycythemia</span> Laboratory diagnosis of high hemoglobin content in blood

Polycythemia is a laboratory finding in which the hematocrit and/or hemoglobin concentration are increased in the blood. Polycythemia is sometimes called erythrocytosis, and there is significant overlap in the two findings, but the terms are not the same: polycythemia describes any increase in hematocrit and/or hemoglobin, while erythrocytosis describes an increase specifically in the number of red blood cells in the blood.

<span class="mw-page-title-main">Megakaryocyte</span> Type of bone marrow cell

A megakaryocyte is a large bone marrow cell with a lobated nucleus that produces blood platelets (thrombocytes), which are necessary for normal clotting. In humans, megakaryocytes usually account for 1 out of 10,000 bone marrow cells, but can increase in number nearly 10-fold during the course of certain diseases. Owing to variations in combining forms and spelling, synonyms include megalokaryocyte and megacaryocyte.

<span class="mw-page-title-main">Chronic myelogenous leukemia</span> Medical condition

Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes and their precursors is found; characteristic increase in basophils is clinically relevant. It is a type of myeloproliferative neoplasm associated with a characteristic chromosomal translocation called the Philadelphia chromosome.

<span class="mw-page-title-main">Thrombocythemia</span> Abnormally high platelet count in the blood

In hematology, thrombocythemia is a condition of high platelet (thrombocyte) count in the blood. Normal count is in the range of 150×109 to 450×109 platelets per liter of blood, but investigation is typically only considered if the upper limit exceeds 750×109/L.

<span class="mw-page-title-main">Essential thrombocythemia</span> Overproduction of platelets in the bone marrow

In hematology, essential thrombocythemia (ET) is a rare chronic blood cancer characterised by the overproduction of platelets (thrombocytes) by megakaryocytes in the bone marrow. It may, albeit rarely, develop into acute myeloid leukemia or myelofibrosis. It is one of the blood cancers wherein the bone marrow produces too many white or red blood cells, or platelets.

Primary myelofibrosis (PMF) is a rare bone marrow blood cancer. It is classified by the World Health Organization (WHO) as a type of myeloproliferative neoplasm, a group of cancers in which there is activation and growth of mutated cells in the bone marrow. This is most often associated with a somatic mutation in the JAK2, CALR, or MPL genes. In PMF, the bony aspects of bone marrow are remodeled in a process called osteosclerosis; in addition, fibroblast secrete collagen and reticulin proteins that are collectively referred to as (fibrosis). These two pathological processes compromise the normal function of bone marrow resulting in decreased production of blood cells such as erythrocytes, granulocytes and megakaryocytes, the latter cells responsible for the production of platelets.

<span class="mw-page-title-main">Myeloproliferative neoplasm</span> Overproduction of blood cells in the bone marrow

Myeloproliferative neoplasms (MPNs) are a group of rare blood cancers in which excess red blood cells, white blood cells or platelets are produced in the bone marrow. Myelo refers to the bone marrow, proliferative describes the rapid growth of blood cells and neoplasm describes that growth as abnormal and uncontrolled.

<span class="mw-page-title-main">Janus kinase 2</span> Non-receptor tyrosine kinase and coding gene in humans

Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

<span class="mw-page-title-main">Thrombopoietin receptor</span> Protein-coding gene in the species Homo sapiens

The thrombopoietin receptor also known as the myeloproliferative leukemia protein or CD110 is a protein that in humans is encoded by the MPL oncogene.

<span class="mw-page-title-main">Basophilia</span> Medical condition

Basophilia is the condition of having greater than 200 basophils/μL in the venous blood. Basophils are the least numerous of the myelogenous cells, and it is rare for their numbers to be abnormally high without changes to other blood components. Rather, basophilia is most often coupled with other white blood cell conditions such as eosinophilia, high levels of eosinophils in the blood. Basophils are easily identifiable by a blue coloration of the granules within each cell, marking them as granulocytes, in addition to segmented nuclei.

<span class="mw-page-title-main">Lestaurtinib</span> Chemical compound

Lestaurtinib is a tyrosine kinase inhibitor structurally related to staurosporine. This semisynthetic derivative of the indolocarbazole K252a was investigated by Cephalon as a treatment for various types of cancer. It is an inhibitor of the kinases fms-like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), tropomyosin receptor kinase (trk) A (TrkA), TrkB and TrkC.

A Janus kinase inhibitor, also known as JAK inhibitor or jakinib, is a type of immune modulating medication, which inhibits the activity of one or more of the Janus kinase family of enzymes, thereby interfering with the JAK-STAT signaling pathway in lymphocytes.

Givinostat (INN) or gavinostat is a histone deacetylase inhibitor with potential anti-inflammatory, anti-angiogenic, and antineoplastic activities. It is a hydroxamic acid used in the form of its hydrochloride.

<span class="mw-page-title-main">Ruxolitinib</span> Medication

Ruxolitinib, sold under the brand name Jakafi among others, is a medication used for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative neoplasm that affects the bone marrow; polycythemia vera, when there has been an inadequate response to or intolerance of hydroxyurea; and steroid-refractory acute graft-versus-host disease. Ruxolitinib is a Janus kinase inhibitor. It was developed and marketed by Incyte Corp in the US under the brand name Jakafi, and by Novartis elsewhere in the world, under the brand name Jakavi.

<span class="mw-page-title-main">Fedratinib</span> Chemical compound

Fedratinib, sold under the brand name Inrebic, is an anti-cancer medication used to treat myeloproliferative diseases including myelofibrosis. It is used in the form of fedratinib hydrochloride capsules that are taken by mouth. It is a semi-selective inhibitor of Janus kinase 2 (JAK-2). It was approved by the FDA on 16 August 2019.

Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.

Prefibrotic primary myelofibrosis (Pre-PMF) is a rare blood cancer, classified by the World Health Organization as a distinct type of myeloproliferative neoplasm in 2016. The disease is progressive to overt primary myelofibrosis, though the rate of progression is variable and not all patients progress. Symptoms and presentation can mimic essential thrombocythemia, with the main differentiator for pre-PMF being the presence of fibrosis in the bone marrow.

Ropeginterferon alfa-2b, sold under the brand name Besremi, is a medication used to treat polycythemia vera. It is an interferon. It is given by injection.

References

  1. 1 2 "polycythemia vera." at Encyclopædia Britannica. 2010. Encyclopædia Britannica Online. 21 Sep. 2010
  2. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. (2016). "Targeted deep sequencing in polycythemia vera and essential thrombocytopenia". Blood Advances. 1 (1): 21–30. doi: 10.1182/bloodadvances.2016000216 . PMC   5744051 . PMID   29296692.
  3. Regimbeau M, Mary R, Hermetet F, Girodon F (2022). "Genetic Background of Polycythemia Vera". Genes. 13 (4). doi: 10.3390/genes13040637 . PMC   9027017 . PMID   35456443. Art. No. 637.
  4. [Polycythemia vera EBSCO database] verified by URAC; accessed from Mount Sinai Hospital, New York
  5. Saini KS, Patnaik MM, Tefferi A (2010). "Polycythemia vera-associated pruritus and its management". Eur J Clin Invest. 40 (9): 828–34. doi:10.1111/j.1365-2362.2010.02334.x. PMID   20597963. S2CID   13638890.
  6. Steinman H, Kobza-Black A, Lotti T, Brunetti L, Panconesi E, Greaves M (1987). "Polycythaemia rubra vera and water-induced pruritus: blood histamine levels and cutaneous fibrinolytic activity before and after water challenge". Br J Dermatol. 116 (3): 329–33. doi:10.1111/j.1365-2133.1987.tb05846.x. PMID   3567071. S2CID   22068469.
  7. Jackson N, Burt D, Crocker J, Boughton B (1987). "Skin mast cells in polycythaemia vera: relationship to the pathogenesis and treatment of pruritus". Br J Dermatol. 116 (1): 21–9. doi:10.1111/j.1365-2133.1987.tb05787.x. PMID   3814512. S2CID   38261640.
  8. Fjellner B, Hägermark O (1979). "Pruritus in polycythemia vera: treatment with aspirin and possibility of platelet involvement". Acta Derm Venereol. 59 (6): 505–12. doi: 10.2340/0001555559505512 . PMID   94209. S2CID   6909368.
  9. 1 2 3 Berlin NI (1975). "Diagnosis and classification of polycythemias". Semin Hematol. 12 (4): 339–51. PMID   1198126.
  10. Torgano G, Mandelli C, Massaro P, Abbiati C, Ponzetto A, Bertinieri G, Bogetto S, Terruzzi E, de Franchis R (2002). "Gastroduodenal lesions in polycythaemia vera: frequency and role of Helicobacter pylori". Br J Haematol. 117 (1): 198–202. doi: 10.1046/j.1365-2141.2002.03380.x . PMID   11918555.
  11. van Genderen P, Michiels J (1997). "Erythromelalgia: a pathognomonic microvascular thrombotic complication in essential thrombocythemia and polycythemia vera". Semin Thromb Hemost. 23 (4): 357–63. doi:10.1055/s-2007-996109. PMID   9263352.
  12. Michiels J (1997). "Erythromelalgia and vascular complications in polycythemia vera". Semin Thromb Hemost. 23 (5): 441–54. doi:10.1055/s-2007-996121. PMID   9387203.
  13. Landolfi R, Ciabattoni G, Patrignani P, Castellana M, Pogliani E, Bizzi B, Patrono C (1992). "Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo". Blood. 80 (8): 1965–71. doi: 10.1182/blood.V80.8.1965.1965 . PMID   1327286.
  14. Lee MW, Yeon SH, Ryu H, Song IC, Lee HJ, Yun HJ, Kim SY, Lee JE, Shin KS, Jo DY (2022). "Volumetric Splenomegaly in Patients With Polycythemia Vera". Journal of Korean Medical Science. 37 (11). doi: 10.3346/jkms.2022.37.e87 . PMC   8938613 . PMID   35315598. Art. No. e87.
  15. Kumar, V, Abbas AK, Fausto N, Mitchell RN, eds. (2007). Robbins Basic Pathology (8th ed.). Saunders Elsevier. ISBN   978-1-4160-2973-1.
  16. Daniel A. Arber; Attilio Orazi; Robert Hasserjian; Jürgen Thiele; Michael J. Borowitz; Michelle M. Le Beau; Clara D. Bloomfield; Mario Cazzola; James W. Vardiman (2016). "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia". Blood. 127 (20): 2391–2405. doi: 10.1182/blood-2016-03-643544 . PMID   27069254. S2CID   18338178.
  17. Verstovsek, S. (2016). "Highlights in polycythemia vera from the 2016 EHA congress". Clin Adv Hematol Oncol. 14 (10): 810–813. PMID   27930632.
  18. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR (2005). "Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders". Lancet. 365 (9464): 1054–61. doi:10.1016/S0140-6736(05)71142-9. PMID   15781101. S2CID   24419497.
  19. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D'Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005). "Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis". Cancer Cell. 7 (4): 387–97. doi: 10.1016/j.ccr.2005.03.023 . PMID   15837627.
  20. Verstovsek, S. (2016). "Highlights in polycythemia vera from the 2016 EHA congress". Clin Adv Hematol Oncol. 14 (10): 810–813. PMID   27930632.
  21. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, Zhao ZJ (2005). "Identification of an Acquired JAK2 Mutation in Polycythemia Vera". Journal of Biological Chemistry. 280 (24): 22788–22792. doi: 10.1074/jbc.C500138200 . PMC   1201515 . PMID   15863514.
  22. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005). "A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders". The New England Journal of Medicine. 352 (17): 1779–1790. doi: 10.1056/NEJMoa051113 . PMID   15858187.
  23. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, Cario H, Pahl HL, Collins A, Reiter A, Grand F, Cross NC (2009). "JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms". Nature Genetics. 41 (4): 446–449. doi:10.1038/ng.334. PMC   4120192 . PMID   19287382.
  24. Hirvonen EA, Pitkänen E, Hemminki K, Aaltonen LA, Kilpivaara O (2017). "Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera". Human Genomics. 11 (1). doi: 10.1186/s40246-017-0102-x . PMC   5397753 . PMID   28427458. Art. No. 6.
  25. Thurmes PJ, Steensma DP (July 2006). "Elevated serum erythropoietin levels in patients with Budd-Chiari syndrome secondary to polycythemia vera: clinical implications for the role of JAK2 mutation analysis". Eur. J. Haematol. 77 (1): 57–60. doi:10.1111/j.1600-0609.2006.00667.x. PMID   16827884. S2CID   37383942.
  26. Mayo Clinic staff. "Polycythemia vera - MayoClinic.com". Polycythemia vera: Definition. Mayo Clinic. Retrieved 2011-09-03.
  27. "What Is Polycythemia Vera?". National Heart, Lung and Blood Institute. Retrieved 2011-09-03.
  28. "Polycythemia Vera Follow-up" . Retrieved 2011-09-03.
  29. Verstovsek, S. (2016). "Highlights in polycythemia vera from the 2016 EHA congress". Clin Adv Hematol Oncol. 14 (10): 810–813. PMID   27930632.
  30. Streiff MB, Smith B, Spivak JL (2002). "The diagnosis and management of polycythemia vera in the era since the Polycythemia Vera Study Group: a survey of American Society of Hematology members' practice patterns". Blood. 99 (4): 1144–9. doi: 10.1182/blood.V99.4.1144 . PMID   11830459.
  31. Di Pollina L, Mulligan R, Juillerat Van der Linden A, Michel JP, Gold G (2000). "Cognitive impairment in polycythemia vera: partial reversibility upon lowering of the hematocrit". Eur. Neurol. 44 (1): 57–9. doi:10.1159/000008194. PMID   10894997. S2CID   40928145.
  32. 1 2 "Polycythemia vera - Diagnosis and treatment - Mayo Clinic". www.mayoclinic.org. Retrieved 2022-03-11.
  33. Björkholm, M; Derolf, AR; Hultcrantz, M; et al. (10 June 2011). "Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms". Journal of Clinical Oncology. 29 (17): 2410–5. doi:10.1200/JCO.2011.34.7542. PMC   3107755 . PMID   21537037.
  34. Li Z, Xu M, Xing S, Ho W, Ishii T, Li Q, Fu X, Zhao Z (2007). "Erlotinib Effectively Inhibits JAK2V617F Activity and Polycythemia Vera Cell Growth". J Biol Chem. 282 (6): 3428–32. doi: 10.1074/jbc.C600277200 . PMC   2096634 . PMID   17178722.
  35. Tefferi, A; Vannucchi, AM; Barbui, T (10 January 2018). "Polycythemia vera treatment algorithm 2018". Blood Cancer Journal. 8 (1): 3. doi:10.1038/s41408-017-0042-7. PMC   5802495 . PMID   29321547.
  36. "Besremi EPAR". European Medicines Agency (EMA). 12 December 2018. Retrieved 14 November 2021.
  37. 1 2 "FDA Approves Treatment for Rare Blood Disease". U.S. Food and Drug Administration (FDA) (Press release). 12 November 2021. Retrieved 12 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  38. "U.S. FDA Approves Besremi (ropeginterferon alfa-2b-njft) as the Only Interferon for Adults With Polycythemia Vera" (Press release). PharmaEssentia. 12 November 2021. Retrieved 14 November 2021 via Business Wire.
  39. Passamonti F, Malabarba L, Orlandi E, Baratè C, Canevari A, Brusamolino E, Bonfichi M, Arcaini L, Caberlon S, Pascutto C, Lazzarino M (2003). "Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia". Haematologica. 88 (1): 13–8. PMID   12551821.
  40. 1 2 Anía B, Suman V, Sobell J, Codd M, Silverstein M, Melton L (1994). "Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935-1989". Am J Hematol. 47 (2): 89–93. doi:10.1002/ajh.2830470205. PMID   8092146. S2CID   31536624.
  41. MICHAEL RUBINKAM (2008). "Cancer cluster confirmed in northeast Pennsylvania". Associated Press. Archived from the original on September 2, 2008.
  42. Yetter, Deborah (May 16, 2020). "Phyllis George, former Kentucky first lady and Miss America, dies at 70". The Courier-Journal . Retrieved May 16, 2020.
  43. Harrington, Jim (March 9, 2022). "'Gifted artist' Ron Miles dies of a rare blood disorder at 58". The Mercury News. Retrieved March 10, 2022.
  44. Allan Kozinn (January 19, 2005). "Nell Rankin Is Dead at 81; Mezzo-Soprano With Met". The New York Times .