Atevirdine

Last updated
Atevirdine
Atevirdine structure.svg
Names
Preferred IUPAC name
{4-[3-(Ethylamino)pyridin-2-yl]piperazin-1-yl}(5-methoxy-1H-indol-2-yl)methanone
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C21H25N5O2/c1-3-22-18-5-4-8-23-20(18)25-9-11-26(12-10-25)21(27)19-14-15-13-16(28-2)6-7-17(15)24-19/h4-8,13-14,22,24H,3,9-12H2,1-2H3 Yes check.svgY
    Key: UCPOMLWZWRTIAA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C21H25N5O2/c1-3-22-18-5-4-8-23-20(18)25-9-11-26(12-10-25)21(27)19-14-15-13-16(28-2)6-7-17(15)24-19/h4-8,13-14,22,24H,3,9-12H2,1-2H3
    Key: UCPOMLWZWRTIAA-UHFFFAOYAK
  • O=C(N2CCN(c1ncccc1NCC)CC2)c4cc3cc(OC)ccc3[nH]4
Properties
C21H25N5O2
Molar mass 379.46 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Atevirdine is a non-nucleoside reverse transcriptase inhibitor that has been studied for the treatment of HIV. [1]

Contents

Synthesis

Atevirdine synthesis: SAR: Atevirdine synthesis.png
Atevirdine synthesis: SAR:

Preparation of the pyridylpiperazine moiety starts by aromatic displacement of chlorine from 2-chloro-3-nitropyridine by piperazine to give 3. The secondary amine is then protected as its BOC derivative by reaction with di-tert-butyl dicarbonate (Boc anhydride) to give 4. The nitro group is then reduced by catalytic hydrogenation. Reductive alkylation with acetaldehyde in the presence of lithium cyanoborohydride gives the corresponding N-ethyl derivative. The protecting group is then removed by reaction with TFA. Reaction of the resulting amine with the imidazolide derivative of 5-methoxy-3-indoleacetic acid produces the amide reverse transcriptase inhibitor, atevirdine.

See also

Related Research Articles

<span class="mw-page-title-main">Reverse transcriptase</span> Enzyme which generates DNA

A reverse transcriptase (RT) is an enzyme used to convert RNA genome to DNA, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobile genetic elements to proliferate within the host genome, and by eukaryotic cells to extend the telomeres at the ends of their linear chromosomes. Contrary to a widely held belief, the process does not violate the flows of genetic information as described by the classical central dogma, as transfers of information from RNA to DNA are explicitly held possible.

<span class="mw-page-title-main">Zidovudine</span> Antiretroviral medication

Zidovudine (ZDV), also known as azidothymidine (AZT), was the first antiretroviral medication used to prevent and treat HIV/AIDS. It is generally recommended for use in combination with other antiretrovirals. It may be used to prevent mother-to-child spread during birth or after a needlestick injury or other potential exposure. It is sold both by itself and together as lamivudine/zidovudine and abacavir/lamivudine/zidovudine. It can be used by mouth or by slow injection into a vein.

The management of HIV/AIDS normally includes the use of multiple antiretroviral drugs as a strategy to control HIV infection. There are several classes of antiretroviral agents that act on different stages of the HIV life-cycle. The use of multiple drugs that act on different viral targets is known as highly active antiretroviral therapy (HAART). HAART decreases the patient's total burden of HIV, maintains function of the immune system, and prevents opportunistic infections that often lead to death. HAART also prevents the transmission of HIV between serodiscordant same-sex and opposite-sex partners so long as the HIV-positive partner maintains an undetectable viral load.

Reverse-transcriptase inhibitors (RTIs) are a class of antiretroviral drugs used to treat HIV infection or AIDS, and in some cases hepatitis B. RTIs inhibit activity of reverse transcriptase, a viral DNA polymerase that is required for replication of HIV and other retroviruses.

<span class="mw-page-title-main">Zalcitabine</span> Chemical compound

Zalcitabine, also called dideoxycytidine, is a nucleoside analog reverse-transcriptase inhibitor (NRTI) sold under the trade name Hivid. Zalcitabine was the third antiretroviral to be approved by the Food and Drug Administration (FDA) for the treatment of HIV/AIDS. It is used as part of a combination regimen.

<span class="mw-page-title-main">Abacavir</span> Chemical compound

Abacavir, sold under the brand name Ziagen among others, is a medication used to treat HIV/AIDS. Similar to other nucleoside analog reverse-transcriptase inhibitors (NRTIs), abacavir is used together with other HIV medications, and is not recommended by itself. It is taken by mouth as a tablet or solution and may be used in children over the age of three months.

<span class="mw-page-title-main">Nevirapine</span> Chemical compound

Nevirapine (NVP), sold under the brand name Viramune among others, is a medication used to treat and prevent HIV/AIDS, specifically HIV-1. It is generally recommended for use with other antiretroviral medications. It may be used to prevent mother to child spread during birth but is not recommended following other exposures. It is taken by mouth.

<span class="mw-page-title-main">Efavirenz</span> Antiretroviral medication

Efavirenz (EFV), sold under the brand names Sustiva among others, is an antiretroviral medication used to treat and prevent HIV/AIDS. It is generally recommended for use with other antiretrovirals. It may be used for prevention after a needlestick injury or other potential exposure. It is sold both by itself and in combination as efavirenz/emtricitabine/tenofovir. It is taken by mouth.

<span class="mw-page-title-main">Sulfamic acid</span> Chemical compound

Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.

<span class="mw-page-title-main">Delavirdine</span> Chemical compound

Delavirdine (DLV) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) marketed by ViiV Healthcare. It is used as part of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus (HIV) type 1. It is presented as the mesylate. The recommended dosage is 400 mg, three times a day.

<span class="mw-page-title-main">Vanoxerine</span> Chemical compound

Vanoxerine is an investigational drug which is being evaluated for the treatment of heart arrhythmias and cocaine dependence. Vanoxerine is a piperazine derivative which has multiple pharmacological activities including acting as an dopamine reuptake inhibitor, serotonin transporter inhibitor, and as a blocker of the cardiac hERG repolarizing potassium channel (IKr).

<span class="mw-page-title-main">Etravirine</span> Also called Intelence is a drug used for the treatment of HIV

Etravirine is a drug used for the treatment of HIV. Etravirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI). Unlike the currently available agents in the class, resistance to other NNRTIs does not seem to confer resistance to etravirine. Etravirine is marketed by Janssen, a subsidiary of Johnson & Johnson. In January 2008, the Food and Drug Administration approved its use for patients with established resistance to other drugs, making it the 30th anti-HIV drug approved in the United States and the first to be approved in 2008. It was also approved for use in Canada on April 1, 2008.

<span class="mw-page-title-main">Calanolide A</span> Chemical compound

Calanolide A is an experimental non-nucleoside reverse transcriptase inhibitor (NNRTI). This compound was extracted from the tree Calophyllum lanigerum, of variety austrocoriaceum, in Lundu, Malaysian state of Sarawak in 1992 by United States National Cancer Institute (NCI). Due to rarity of the raw materials and low yield of the active ingredient, total synthesis of the compound was devised in 1996. For the same reason, its sister compound (-)-Calanolide B have been touted as replacement. As a result of the discovery of Calanolide A, Sarawak Medichem pharmaceuticals company was established as a joint venture between US-based MediChem Research Inc and Craun Research Sdn Bhd, a company owned by the Sarawak state government. In 2006, Craun Research acquired Sarawak MediChem. In 2016, Craun Research announced the completion of Phase I clinical trials for Calanolide A.

<span class="mw-page-title-main">Diarylpyrimidines</span> Class of chemical compounds

Diarylpyrimidines (DAPY) and diaryltriazines (DATA) are two closely related classes of molecules resembling the pyrimidine nucleotides found in DNA. They show great potency in inhibiting the activity of HIV reverse transcriptase. Several compounds in this class are non-nucleoside reverse transcriptase inhibitors used clinically in the treatment of HIV/AIDS, notably etravirine and rilpivirine.

<span class="mw-page-title-main">HIV disease–related drug reaction</span>

HIV disease–related drug reaction is an adverse drug reaction caused by drugs used for the treatment of HIV/AIDS.

CCR5 receptor antagonists are a class of small molecules that antagonize the CCR5 receptor. The C-C motif chemokine receptor CCR5 is involved in the process by which HIV, the virus that causes AIDS, enters cells. Hence antagonists of this receptor are entry inhibitors and have potential therapeutic applications in the treatment of HIV infections.

Non-nucleoside reverse-transcriptase inhibitors (NNRTIs) are antiretroviral drugs used in the treatment of human immunodeficiency virus (HIV). NNRTIs inhibit reverse transcriptase (RT), an enzyme that controls the replication of the genetic material of HIV. RT is one of the most popular targets in the field of antiretroviral drug development.

Discovery and development of nucleoside and nucleotide reverse-transcriptase inhibitors began in the 1980s when the AIDS epidemic hit Western societies. NRTIs inhibit the reverse transcriptase (RT), an enzyme that controls the replication of the genetic material of the human immunodeficiency virus (HIV). The first NRTI was zidovudine, approved by the U.S. Food and Drug Administration (FDA) in 1987, which was the first step towards treatment of HIV. Six NRTI agents and one NtRTI have followed. The NRTIs and the NtRTI are analogues of endogenous 2´-deoxy-nucleoside and nucleotide. Drug-resistant viruses are an inevitable consequence of prolonged exposure of HIV-1 to anti-HIV drugs.

<span class="mw-page-title-main">Bictegravir/emtricitabine/tenofovir alafenamide</span> Fixed dose combination HIV drug

Bictegravir/emtricitabine/tenofovir alafenamide, sold under the brand name Biktarvy, is a fixed-dose combination antiretroviral medication for the treatment of HIV/AIDS. It contains bictegravir, a human immunodeficiency virus type 1 (HIV-1) integrase strand transfer inhibitor; emtricitabine, an HIV-1 nucleoside analog reverse transcriptase inhibitor; and tenofovir alafenamide, an HIV-1 nucleoside analog reverse transcriptase inhibitor.

<span class="mw-page-title-main">Azvudine</span> Antiviral drug

Azvudine is an antiviral drug which acts as a reverse transcriptase inhibitor. It was discovered for the treatment of hepatitis C and has since been investigated for use against other viral diseases such as AIDS and COVID-19, for which it was granted conditional approval in China.

References

  1. Morse GD, Reichman RC, Fischl MA, et al. (January 2000). "Concentration-targeted phase I trials of atevirdine mesylate in patients with HIV infection: dosage requirements and pharmacokinetic studies. The ACTG 187 and 199 study teams". Antiviral Res. 45 (1): 47–58. doi:10.1016/S0166-3542(99)00073-X. PMID   10774589.
  2. D. L. Romero, Drugs Future 19, 9 (1995).
  3. WO 9109849,Romero, Donna Lee; Mitchell, Mark Allen& Thomas, Richard Charleset al.,"Diaromatic substituted anti-AIDS compounds",published 1991-07-11, assigned to Upjohn
  4. Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, N.; May, P. D.; Palmer, J. R.; Johnson, P. D.; Smith, H. W.; Busso, M.; et al. (1994). "Discovery, Synthesis, and Bioactivity of Bis(heteroaryl)piperazines. 1. A Novel Class of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors". Journal of Medicinal Chemistry. 37 (7): 999–1014. doi:10.1021/jm00033a018. PMID   7512142.