In crystallography, a Strukturbericht designation or Strukturbericht type is a system of detailed crystal structure classification by analogy to another known structure. The designations were intended to be comprehensive but are mainly used as supplement to space group crystal structures designations, especially historically. [1] [2] Each Strukturbericht designation is described by a single space group, but the designation includes additional information about the positions of the individual atoms, rather than just the symmetry of the crystal structure. While Strukturbericht symbols exist for many of the earliest observed and most common crystal structures, the system is not comprehensive, and is no longer being updated. Modern databases such as Inorganic Crystal Structure Database index thousands of structure types directly by the prototype compound (i.e. "the NaCl structure" instead of "the B1 structure"). [3] These are essentially equivalent to the old Stukturbericht designations.
The designations were established by the journal Zeitschrift für Kristallographie – Crystalline Materials, which published its first round of supplemental reviews under the name Strukturbericht from 1913-1928. [4] These reports were collected into a book published in 1931 by Paul Peter Ewald and Carl Hermann which became Volume 1 of Strukturbericht. [5] While the series was continued after the war under the name Structure reports, which was published through 1990, [6] the series stopped generating new symbols. Instead, some new additional designations were given in books by Smithels, [7] and Pearson. [8]
For the first volume, the designation consisted of a capital letter (A,B,C,D,E,F,G,H,L,M,O) specifying a broad category of compounds, and then a number to specify a particular crystal structure. In the second volume, subscript numbers were added, some early symbols were modified (e.g. what was initially D1 became D01, noted in the tables below as "D1 → D01"), and the categories were modified (types I,K,S were added). In the third volume, the class I was renamed J. Later designations began to use a lower case letter in subscripts as well. [9]
The 'A' compounds are reserved for structures made up of atoms of all the same chemical element.
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
A1 | Cu | Fm3m | Cubic close-packed structure (also: Face-centered cubic structure) | |
A2 | W | Im3m | Body-centered cubic structure | |
A3 | Mg | P63/mmc | Hexagonal close-packed structure | |
A3' | α-La | P63/mmc | α-La structure (ABAC Barlow packing) | |
A4 | C (diamond) | Fd3m | Diamond cubic structure | |
A5 | β-Sn | I41/amd | ||
A6 | Indium | I4/mmm | Indium structure | |
A7 | α-As | R3m | ||
A8 | gray Se | P3121 | Also called γ-Se, but that term is also used for a monoclinic form. | |
A9 | C (graphite) | P63/mmc | Hexagonal graphite structure | |
A10 | α-Hg | R3m | ||
A11 | α-Ga | Cmca | α-Gallium structure | |
A12 | α-Mn | I43m | α-Manganese structure | |
A13 | β-Mn | P4132 | β-Manganese structure | |
A14 | I2 | Cmca | Molecular iodine structure | |
A15 | β-W | Pm3n | Weaire–Phelan structure | |
A16 | α-S | Fddd | ||
A17 | P | Cmca | Black phosphorus structure | |
A18 | Cl | P42/ncm | Incorrect structure [10] | |
A19 → Ai, Ah | Po (incorrectly) | C2 | ||
A20 | α-U | Cmcm | ||
Aa | α-Pa | I4/mmm | ||
Ab | β-U | P42/mnm | σ phase | |
Ac | α-Np | Pnma | ||
Ad | β-Np | P4/nmm | ||
Af | γ-HgSn6-10 | P6/mmm | ||
Ag | B | P42/nnm | ||
Ah | α-Po | Pm3m | Simple cubic structure | |
Ai | β-Po | R3m | ||
Ak | γ-monoclinic Se | P21/c | ||
Al | β-monoclinic Se | P21/c |
'B' designates compounds of two elements with equal numbers of atoms.
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
B1 | NaCl | Fm3m | Rock salt structure | |
B2 | CsCl | Pm3m | caesium chloride structure | |
B3 | ZnS | F43m | Zincblende structure | |
B4 | ZnS | P63mc | Wurtzite crystal structure | |
B5 | 4H SiC | P63mc | Moissanite (4H polytype) structure | |
B6 | 6H SiC | P63mc | Moissanite(6H polytype) structure | |
B7 | Si-C 15R | R3m | 15R-SiC structure | |
B8 → B81 | ||||
B81 | NiAs | P63/mmc | Nickeline structure | |
B82 | Ni2In | P63/mmc | ||
B9 | α-HgS | P3221 | Cinnabar structure | |
B10 | PbO | P4/nmm | Lead(II) oxide/Litharge structure | |
B11 | γ-CuTi | P4/nmm | ||
B12 → Bk | BN (incorrectly) [11] | P63mc | Originally reported boron nitride structure | |
B13 | β-NiS | R3m | β-Nickel sulfide/Millerite structure | |
B14 | FeAs | Pnma | Westerveldite structure | |
B15 → B27 | ||||
B16 | GeS | Pnma | Germanium(II) sulfide/Herzenbergite structure | |
B17 | PtS | P42/mmc | Platinum(II) sulfide/Cooperite structure | |
B18 | CuS | P63/mmc | Copper monosulfide/Covellite structure | |
B19 | β′-AuCd | Pmma | The martensitic β′-AuCd structure | |
B20 | FeSi | P213 | FeSi/Fersilicite structure | |
B21 | α-CO | P213 | α-Carbon monoxide structure | |
B24 | TlF-II (incorrectly) [12] | Fmmm | Originally reported Thallium(I) fluoride structure | |
B26 | CuO | C2/c | Copper(II) oxide/Tenorite structure | |
B27 | FeB | Pnma | Iron boride structure | |
B28 → B20 | ||||
B29 → B16 | SnS (incorrectly) | Pnma | Tin(II) sulfide structure | |
B30 | MgZn | Imm2 | ||
B31 → B14 | MnP | Pnma | ||
B32 | NaTl | Fd3m | ||
B33 | CrB | Cmcm | Chromium(III) boride structure | |
B34 | PdS | P42/m | Palladium(II) sulfide structure | |
B35 | CoSn | P6/mmm | ||
B37 | SeTl | I4/mcm | ||
Ba | CoU | I213 | ||
Bb | ζ-AgZn | P3 | ||
Bc → B33 | CaSi | Cmcm | ||
Bd | η-NiSi | |||
Be | CdSb | Pbca | ||
Bf → B33 | CrB | (duplicate of B33) | ||
Bg | MoB | I41/amd | Molybdenum boride structure | |
Bh | WC | P6m2 | Tungsten carbide structure | |
Bi | AsTi | P63/mmc | ||
Bk | BN | P63/mmc | Boron nitride structure | |
Bl | AsS | |||
Bm | TiB |
'C' designates compounds of the stoichiometry AB2.
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
C1 | CaF2 | Fm3m | Fluorite structure | |
C1b | AgAsMg | F43m | Half Heusler structure | |
C2 | FeS2 | Pa3 | Pyrite structure | |
C3 | Cu2O | Pn3m | Cuprite structure | |
C4 | TiO2 | P42/mnm | Rutile structure | |
C5 | TiO2 | I41/amd | Anatase structure | |
C6 | CdI2 | P3m1 | Cadmium iodide structure | |
C7 | MoS2 | P63/mmc | Molybdenum disulfide structure | |
C8 | β-SiO2 | P6222 | β-Quartz structure | |
C9 | β-Cristobalite | Fd3m | Idealized β-Cristobalite structure | |
C10 | β-Tridymite | P63/mmc | β-Tridymite structure | |
C11 → C11a,C11b | ||||
C11a | CaC2 | I4/mmm | ||
C11b | MoSi2 | I4/mmm | Molybdenum disilicide structure | |
C12 | CaSi2 | R3m | ||
C13 | HgI2 | P42/nmc | Coccinite structure | |
C14 | MgZn2 | P63/mmc | MgZn2 Laves phase | |
C15 | MgCu2 | Fd3m | MgCu2 Laves phase | |
C15b | AuBe5 | F43m | ||
C16 | CuAl2 | I4/mcm | Khatyrkite structure | |
C18 | FeS2 | Pnnm | Marcasite structure | |
C19 | α-Sm | R3m | α-Samarium structure (ABCBCACAB Barlow packing) | |
C21 | TiO2 | Pbca | Brookite structure | |
C22 | Fe2P | P321 (original, incorrect structure) P62m (revised) | ||
C23 | PbCl2 | Pnma | Cotunnite structure | |
C24 | HgBr2 | Cmc21 | Mercury(II) bromide structure | |
C25 → C28 | HgCl2 | Pnma | Mercury(II) chloride structure | |
C27 | CdI2 | P63mc | ||
C28 | HgCl2 | |||
C29 → C23 | SrH2 | Pnma | Strontium hydride structure | |
C30 | SiO2 | P41212 | α–Cristobalite structure | |
C32 | AlB2 | P6/mmm | Aluminium diboride structure | |
C33 | Bi2Te3 | R3m | Bismuth telluride structure | |
C34 | AuTe2 | C2/m | ||
C35 | CaCl2 | Pnnm | Calcium chloride structure | |
C36 | MgNi2 | P63/mmc | MgNi2 Laves phase | |
C37 | Co2Si | Pnma | ||
C38 | Cu2Sb | P4/nmm | ||
C39 → C15 | ||||
C40 | CrSi2 | P6222 | ||
C41 → C14 | ||||
C42 | SiS2 | Ibam | Silicon disulfide structure | |
C43 | ZrO2 | P21/c | Baddeleyite structure | |
C44 | GeS2 | Fdd2 | Germanium disulfide structure | |
C46 | AuTe2 | Pma2 | Krennerite structure | |
C47 | SeO2 | P42/mbc | Selenium dioxide structure | |
C48 → C11b | ||||
C49 | ZrSi2 | Cmcm | ||
C50 | PdCl2 | Pnnm | α-Palladium(II) chloride structure | |
C51 → C16 | ||||
C53 | Sr Br2 | P4/n | ||
C54 | TiSi2 | Fddd | Titanium disilicide structure | |
Ca | Mg2Ni | P6222 | ||
Cb | CuMg2 | Fddd | ||
Cc | ThSi2 | I41/amd | ||
Ce | PdSn2 | Aba2 | ||
Cg | ThC2 | C2/c | ||
Ch | Cu2Te | P6/mmm | ||
Ck | LiZn2 |
'D' designates compounds of arbitrary stoichiometry. Originally, D1-D10 were set aside for stoichiometry AB3, D11-D20 for stoichiometry ABn for n > 3, D31-D50 for (ABn)2, and D51 up for the AmBn for arbitrary m and n. [9]
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
D02 | CoAs3 | Im3 | Skutterudite structure | |
D03 | BiF3 | Fm3m | Bismuth trifluoride structure | |
D04 | CrCl3 | P3112 | Chromium(III) chloride structure | |
D05 | BiI3 | R3 | Bismuth(III) iodide structure | |
D06 | LaF3 | P3c1 | Lanthanum trifluoride/Fluocerite structure | |
D09 | α-ReO3 | Pm3m | α-Rhenium trioxide structure | |
D011 | Fe3C | Pnma | Cementite structure | |
D012 | FeF3 | R3c | ||
D014 → D012 | AlF3 | R32 | Aluminium fluoride structure | |
D015 | AlCl3 | C2/m | Aluminium chloride structure | |
D017 | BaS3 | P421m | ||
D018 | Na3As | P63/mmc | Sodium arsenide structure | |
D019 | Ni3Sn | P63/mmc | ||
D020 | Al3Ni | Pnma | ||
D021 | Cu3P | P3c1 (original structure) P63cm (revised) | Copper(I) phosphide structure | |
D022 | Al3Ti | I4/mmm | ||
D023 | Al3Zr | I4/mmm | ||
D024 | Ni3Ti | P63/mmc | ||
D0a | β-TiCu3 | Pmmn | ||
D0c → D0'c | SiU3 | I4/mcm | ||
D0'c | Ir3Si | I4/mcm | ||
D0d | AsMn3 | Cmcm | ||
D0e | Ni3P | I4 | ||
D1 | NH3 | P213 | ||
D12 | SiF4 | I43m | Silicon tetrafluoride structure | |
D13 | Al4Ba | I4/mmm | ||
D1a | Ni4Mo | I4/m | ||
D1b | Al4U | Imma | ||
D1c | PtSn4 | Aba2 | ||
D1d | Pb4Pt | P4/nbm | ||
D1e | B4Th | P4/mbm | B4Th structure | |
D1f → Cb | Mn4B | |||
D1g | B4C | |||
D2 → D02 | ||||
D21 | CaB6 | Pm3m | Calcium hexaboride structure | |
D23 | NaZn13 | Fm3c | ||
D2b | Mn12Th | I4/mmm | ||
D2c | MnU6 | I4/mcm | ||
D2d | CaCu5 | P6/mmm | ||
D2e | BaHg11 | Pm3 | ||
D2f | UB12 | Fm3m | ||
D2g | Fe8N | I4/mmmm | ||
D2h | Al6Mn | Cmcm | ||
D31 | Hg2Cl2 | I4/mmm | Calomel structure | |
D51 | Al2O3 | R3c | Corrundum structure | |
D52 | La2O3 | P3m1 | ||
D53 | Mn2O3 | Ia3 | Manganese(III) oxide/Bixbyite structure | |
D54 | Sb2O3 | Fd3m | ||
D55 | Ag2O3 | Pn3m | ||
D58 | Sb2S3 | Pnma | Antimony trisulfide/Stibnite structure | |
D59 | Zn3Pt2 | P42/nmc | ||
D510 | Cr3C2 | Pnma | ||
D511 | Sb2O3 | Pccn | Antimony trioxide/Valentinite structure | |
D512 | β–Bi2O3 | |||
D513 | Al3Ni2 | P3m1 | ||
D5a | Si2U3 | P4/mbm | ||
D5b | Pt2Sn3 | P63/mmc | ||
D5c | Pu2C3 | I43d | ||
D5e | Ni3S2 | R32 | Nickel subsulfide/Heazlewoodite structure | |
D5f | As2S3 | P21/n | Arsenic trisulfide structure | |
D71 | Al4C3 | R3m | Aluminium carbide structure | |
D72 | Co3S4 | Fd3m | ||
D73 | Th3P4 | I43d | Th3P4 structure | |
D7a | 𝛿-Ni3Sn4 | |||
D7b | Ta3B4 | Immm | ||
D81 | Fe3Zn10 | I43m | ||
D82 | Cu5Zn8 | I43m | Gamma brass structure | |
D83 | Cu9Al4 | P43m | ||
D84 | Cr23C6 | Fm3m | Cr23C6 crystal structure/Chromium(II) carbide structure | |
D85 | Fe7W6 | R3m | ||
D86 | Cu15Si4 | I43d | ||
D88 | Mn5Si3 | P63/mcm | ||
D89 | Co9S8 | Fm3m | ||
D810 | Cr5Al8 | R3m | ||
D811 | Co2Al5 | P63/mmc | ||
D8a | Mn23Th6,Cu16Mg6Si7 (G-phase) | Fm3m | ||
D8b | σ-CrFe | P42/mnm | ||
D8c | Mg2Zn11 | Pm3 | ||
D8d | Co2Al9 | P21/c | ||
D8e | Mg32(Al,Zn)49 | Im3 | ||
D8f | Ge7Ir3 | Im3m | ||
D8g | Ga2Mg5 | Ibam | ||
D8h | W2B5 | P63/mmc | ||
D8i | Mo2B5 | R3m | ||
D8k | Th7S12 | P63/m | ||
D8l | Cr5B4 | I4/mcm | ||
D8m | W5Si3 | I4/mcm | ||
D101 | C3Cr7 | Pnma | ||
D102 | Fe3Th7 | P63mc | ||
D31 → D31 | ||||
D51 → D51 | ||||
D52 → D52 | ||||
D61 → D61 | ||||
D81 → D81 | ||||
D82 → D82 | ||||
D83 → D83 |
Letters between 'E' and 'K' designate more complex compounds.
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
E01 | PbFCl | P4/nmm | Matlockite structure | |
E03 | CdOHCl | P63mc | ||
E05 | FeOCl | Iron oxychloride structure | ||
E07 | FeAsS | P21/c | Arsenopyrite structure | |
E11 | CuFeS2 | I42d | Chalcopyrite structure | |
E1a | MgCuAl2 | Cmcm | ||
E1b | AgAuTe4 | P2/c | Sylvanite structure | |
E21 | CaTiO3 | Pm3m | Perovskite structure | |
E22 | FeTiO3 | R3 | Ilmenite structure | |
E24 | NH4CdC13 | Pnma | ||
E3 | CdAl2S4 | I4 | ||
E33 | FeSb2S4 | Pnam | Berthierite structure | |
E81 | Eu2Ir2O7 | Fd3m | Pyrochlore structure | |
E91 | Ca3Al2O6 | Pm3m | ||
E93 | Fe3W3C | Fd3m | ||
E94 | Al5C3N | P63mc | ||
E9a | Al7Cu2Fe | P4/mnc | ||
E9b | Al8FeMg3Si6 | P62m | ||
E9c | Mn3Al9Si | P63/mmc | ||
E9d | AlLi3N2 | Ia3 | ||
E9e | CuFe2S3 | Pnma | Cubanite structure | |
F01 | NiSSb | P213 | Ullmannite structure | |
F02 | COS | R3m | Carbonyl sulfide structure | |
F51 | CrNaS2 | R3m | ||
F52 | KN3 | I4/mcm | ||
F54 | NH4O2Cl | P421m | ||
F56 | CuSbS2 | Pnma | Chalcostibite structure | |
F59 | KCNS | Pbcm | ||
F510 | KAg(CN)2 | P31c | ||
F513 | KBO2 | R3c | ||
F5a | FeKS2 | C2/c | ||
F51 → F51 | ||||
F52 → F52 | ||||
F61 → E11 | ||||
G01 | CaCO3 | R3c | Calcite structure | |
G02 | CaCO3 | Pmcn | Aragonite structure | |
G06 | KClO3 | P21/m | ||
G3 | NaClO3 | P213 | Sodium chlorate structure | |
G32 | Na2SO3 | P3 | Sodium sulfite structure | |
G4 → E22 | ||||
G5 → E21 | ||||
G71 | CeCO3F | P62c | Bastnäsite structure | |
H01 | CaSO4 | Cmcm | Anhydrite structure | |
H02 | BaSO4 | Pnma | Baryte structure | |
H03 → S11 | ||||
H05 | KClO4 | Pnma | Potassium perchlorate structure | |
H07 | BPO4 | I4 | ||
H1 → H01 | ||||
H11 | Al2MgO4 | Fd3m | Spinel structure | |
H12 → S12 | ||||
H13 → S13 | ||||
H15 | K2PtC14 | P4/mmmm | ||
H16 | β-K2SO4 | Pnma | ||
H2 → H02 | ||||
H21 | Ag3PO4 | P43n | Silver phosphate structure | |
H24 | Cu3S4V | P43m | ||
H25 | AsCu3S4 | Pmn21 | Enargite structure | |
H26 | Cu2FeS4Sn | I42m | Stannite structure | |
H3 → S11 | ||||
H31 → S14 | ||||
H4 | CaWO4 | I41/a | Scheelite structure | |
H57 | Ca5(PO4)3F,Cl,OH | P63/m | Apatite structure | |
H11 → H11 | ||||
H12 → S12 | ||||
H13 → S13 | ||||
H15 → H15 | ||||
H31 → S14 | ||||
H61 → J11 | ||||
I11 → J11 | ||||
I113 → J113 | ||||
J11 | K2PtCl6 | Fm3m | ||
J113 | K2GeF6 | P3m1 | ||
K01 | K2S2O5 | P21/m | ||
K11 | KSO3 | P321 | ||
K12 | CsSO3 | P63mc | ||
K31 | Cs3CoC15 | I4/mcm | ||
K41 | NH4SO4 | P21/c |
'L' designates intermetallic compounds.
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
L10 | CuAu | P4/mmm | ||
L11 | CuPt | R3m | ||
L12 | Cu3Au | Pm3m | Cu3Au structure | |
L13 | CdPt3 | Cmmm | ||
L1a | CuPt3 | |||
L21 | AlCu2Mn | Fm3m | Heusler compounds | |
L22 | Sb2Tl7 | Im3m | ||
L2a | 𝛿-CuTi | P4/mmm | ||
L60 | CuTi3 | P4/mmm | ||
L'1 | Fe4N | Pm3m | ||
L'12 | AlF3C | Perovskite structure | ||
L'2 | ThH2 | I4/mmm | ||
L'2b | ThH2 | I4/mmm | ||
L'3 → B81 | Fe2N | |||
L'32 | β-V2N | P31m | ||
L60 | Ti3Cu | P4/mmm | ||
L10 → L10 | ||||
L'10 → L'1 | ||||
L11 → L11 | ||||
L12 → L12 | ||||
L13 → L13 | ||||
L20 → B2 | ||||
L'20 → L'2 | ||||
L21 → L21 | ||||
L22 → L22 |
Strukturbericht designation | Diagram | Prototype | Space group | Description |
---|---|---|---|---|
S11 | ZrSiO4 | I41/amd | Zircon structure | |
S12 | Mg2SiO4 | Pnma | Forsterite structure | |
S13 | Be2SiO4 | R3 | Phenakite structure | |
S14 | Al2Ca3Si3O12 | Ia3d | Garnet structure | |
S21 | Sc2Si2O7 | C2/m | Thortveitite structure | |
S31 | Be3Al2Si6O18 | P6/mcc | Beryl structure | |
S32 | BaSi4O9 | P6c2 | ||
S53 | Ca2MgSi2O7 | P421m | Åkermanite structure | |
S6 | NaAlSi2O6H2O | I43d | ||
S62 | Na8Al6Si6O24Cl2 | P43n |
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics. The word crystallography is derived from the Ancient Greek word κρύσταλλος, with its meaning extending to all solids with some degree of transparency, and γράφειν. In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 would be the International Year of Crystallography.
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the positions of the atoms in the crystal can be determined, as well as their chemical bonds, crystallographic disorder, and various other information.
In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.
In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation. For example, in many crystals in the cubic crystal system, a rotation of the unit cell by 90 degrees around an axis that is perpendicular to one of the faces of the cube is a symmetry operation that moves each atom to the location of another atom of the same kind, leaving the overall structure of the crystal unaffected.
In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.
Skutterudite is a cobalt arsenide mineral containing variable amounts of nickel and iron substituting for cobalt with the ideal formula CoAs3. Some references give the arsenic a variable formula subscript of 2–3. High nickel varieties are referred to as nickel-skutterudite, previously chloanthite. It is a hydrothermal ore mineral found in moderate to high temperature veins with other Ni-Co minerals. Associated minerals are arsenopyrite, native silver, erythrite, annabergite, nickeline, cobaltite, silver sulfosalts, native bismuth, calcite, siderite, barite and quartz. It is mined as an ore of cobalt and nickel with a by-product of arsenic.
Electron crystallography is a method to determine the arrangement of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.
Carl Heinrich Hermann, or Carl HermannGerman:[kaʁlˈhɛʁman], was a German physicist and crystallographer known for his research in crystallographic symmetry, nomenclature, and mathematical crystallography in N-dimensional spaces. Hermann was a pioneer in crystallographic databases and, along with Paul Peter Ewald, published the first volume of the influential Strukturbericht in 1931.
Magnesium aluminide is an intermetallic compound of magnesium and aluminium. Common phases (molecular structures) include the beta phase (Mg2Al3) and the gamma phase (Mg17Al12), which both have cubic crystal structures. Magnesium aluminides are important constituents of 5XXX aluminium alloys (aluminium-magnesium) and magnesium-aluminium alloys, determining many of their engineering properties. Due to the advantage of low density and being strong, magnesium aluminide is important for aircraft engines. MgAl has also been investigated for use as a reactant to produce metal hydrides in hydrogen storage technology. Like many intermetallics, MgAl compounds often have unusual stoichiometries with large and complex unit cells.
Aluminium diboride (AlB2) is a chemical compound made from the metal aluminium and the metalloid boron. It is one of two compounds of aluminium and boron, the other being AlB12, which are both commonly referred to as aluminium boride.
Acta Crystallographica is a series of peer-reviewed scientific journals, with articles centred on crystallography, published by the International Union of Crystallography (IUCr). Originally established in 1948 as a single journal called Acta Crystallographica, there are now six independent Acta Crystallographica titles:
A crystallographic database is a database specifically designed to store information about the structure of molecules and crystals. Crystals are solids having, in all three dimensions of space, a regularly repeating arrangement of atoms, ions, or molecules. They are characterized by symmetry, morphology, and directionally dependent physical properties. A crystal structure describes the arrangement of atoms, ions, or molecules in a crystal.
The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure, and was originated by W. B. Pearson. The symbol is made up of two letters followed by a number. For example:
In crystallography, the hexagonal crystal family is one of the 7 crystal families, which includes two crystal systems and two lattice systems. While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent. In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice.
Cr23C6 is the prototypical compound of a common crystal structure, discovered in 1933 as part of the chromium-carbon binary phase diagram. Over 85 known compounds adopt this structure type, which can be described as a NaCl-like packing of chromium cubes and cuboctahedra.
Topologically close pack (TCP) phases, also known as Frank-Kasper (FK) phases, are one of the largest groups of intermetallic compounds, known for their complex crystallographic structure and physical properties. Owing to their combination of periodic and aperiodic structure, some TCP phases belong to the class of quasicrystals. Applications of TCP phases as high-temperature structural and superconducting materials have been highlighted; however, they have not yet been sufficiently investigated for details of their physical properties. Also, their complex and often non-stoichiometric structure makes them good subjects for theoretical calculations.
In solid state physics, the magnetic space groups, or Shubnikov groups, are the symmetry groups which classify the symmetries of a crystal both in space, and in a two-valued property such as electron spin. To represent such a property, each lattice point is colored black or white, and in addition to the usual three-dimensional symmetry operations, there is a so-called "antisymmetry" operation which turns all black lattice points white and all white lattice points black. Thus, the magnetic space groups serve as an extension to the crystallographic space groups which describe spatial symmetry alone.
Theo Willem Jan Marie Janssen, better known as Ted Janssen, was a Dutch physicist and Full Professor of Theoretical Physics at the Radboud University Nijmegen. Together with Pim de Wolff and Aloysio Janner, he was one of the founding fathers of N-dimensional superspace approach in crystal structure analysis for the description of quasi periodic crystals and modulated structures. For this work he received the Aminoff Prize of the Royal Swedish Academy of Sciences in 1988 and the Ewald Prize of the International Union of Crystallography in 2014. These achievements were merit of his unique talent, combining a deep knowledge of physics with a rigorous mathematical approach. Their theoretical description of the structure and symmetry of incommensurate crystals using higher dimensional superspace groups also included the quasicrystals that were discovered in 1982 by Dan Schechtman, who received the Nobel Prize in Chemistry in 2011. The Swedish Academy of Sciences explicitly mentioned their work at this occasion.
This is a timeline of crystallography.
Urea can crystallise with other compounds. These can be called urea adducts or if a solvent is involved, a urea solvate. Urea can also be a neutral ligand if it is coordinated to a central metal atom. Urea can form hydrogen bonds to other oxygen and nitrogen atoms in the substance it crystallises with. This stiffens the solid and raises the melting point. T