Cooperite (mineral)

Last updated
Cooperite
Cooperite.jpg
Cooperite specimen from Tulameen River, Princeton, British Columbia, Canada
General
Category Mineral
Formula
(repeating unit)
PtS (also PdS, NiS)
IMA symbol Cpe [1]
Strunz classification 2.CC.35b
Dana classification2.8.5.1
Crystal system Tetragonal
Crystal class Tetragonal - Ditetragonal dipyramidal
Space group P42/mmc (No. 131)
Unit cell 73.57 ų (Calculated from Unit Cell)
Identification
ColourSteel gray
Twinning Occasional
Fracture Conchoidal
Mohs scale hardness4–5
Luster Metallic
Diaphaneity Opaque
Specific gravity 9.5
Density 9.5 g/cm3 (Measured), 10.2 g/cm3 (Calculated)
Pleochroism Visible: white to creamy white or bluish white
Major varieties
FormDistorted crystal fragments, irregular grains to 1.5mm

Cooperite is a grey mineral consisting of platinum sulfide (PtS), generally in combinations with sulfides of other elements such as palladium and nickel (PdS and NiS). Its general formula is (Pt,Pd,Ni)S. It is a dimorph of braggite. [2]

It is mined as an ore of platinum and platinum group metals such as palladium. It occurs in South Africa in minable quantities and an old mine near Mount Washington on Vancouver Island. [3]

It was first described in 1928 for occurrences in the Bushveld Igneous Complex and named after South African metallurgist Richard A. Cooper who first characterized it. [2] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Palladium</span> Chemical element, symbol Pd and atomic number 46

Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form a group of elements referred to as the platinum group metals (PGMs). They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

<span class="mw-page-title-main">Lazurite</span> Alumino-silicate mineral whose blue colour is due to a sulfide species and not copper

Lazurite is a tectosilicate mineral with sulfate, sulfur and chloride with formula (Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]. It is a feldspathoid and a member of the sodalite group. Lazurite crystallizes in the isometric system although well‐formed crystals are rare. It is usually massive and forms the bulk of the gemstone lapis lazuli.

<span class="mw-page-title-main">Pentlandite</span> Iron–nickel sulfide

Pentlandite is an iron–nickel sulfide with the chemical formula (Fe,Ni)9S8. Pentlandite has a narrow variation range in nickel to iron ratios (Ni:Fe), but it is usually described as 1:1. In some cases, this ratio is skewed by the presence of pyrrhotite inclusions. It also contains minor cobalt, usually at low levels as a fraction of weight.

The platinum-group metals (PGMs), also known as the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs), are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block.

<span class="mw-page-title-main">Nickeline</span> Nickel arsenide mineral

Nickeline or niccolite is a mineral consisting primarily of nickel arsenide (NiAs). The naturally-occurring mineral contains roughly 43.9% nickel and 56.1% arsenic by mass, but composition of the mineral may vary slightly.

<span class="mw-page-title-main">Ullmannite</span> Nickel antimony sulfide mineral

Ullmannite or Nickel glance is a nickel antimony sulfide mineral with formula: NiSbS. Considerable substitution occurs with cobalt and iron in the nickel site along with bismuth and arsenic in the antimony site. A solid solution series exists with the high cobalt willyamite.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6–7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Troilite</span> Rare iron sulfide mineral: FeS

Troilite is a rare iron sulfide mineral with the simple formula of FeS. It is the iron-rich endmember of the pyrrhotite group. Pyrrhotite has the formula Fe(1-x)S which is iron deficient. As troilite lacks the iron deficiency which gives pyrrhotite its characteristic magnetism, troilite is non-magnetic.

<span class="mw-page-title-main">Native metal</span> Form of metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include aluminium, antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, selenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.

<span class="mw-page-title-main">Creighton Mine</span> Underground mine in Canada

Creighton Mine is an underground nickel, copper, and platinum-group elements (PGE) mine. It is presently owned and operated by Vale Limited in the city of Greater Sudbury, Ontario, Canada. Open pit mining began in 1901, and underground mining began in 1906. The mine is situated in the Sudbury Igneous Complex (SIC) in its South Range geologic unit. The mine is the source of many excavation-related seismic events, such as earthquakes and rock burst events. It is home to SNOLAB, and is currently the deepest nickel mine in Canada. Expansion projects to deepen the Creighton Mine are currently underway.

<span class="mw-page-title-main">Stillwater igneous complex</span> Large mass of igneous rock in Montana, containing metal ore deposits

The Stillwater igneous complex is a large layered mafic intrusion (LMI) located in southern Montana in Stillwater, Sweet Grass and Park Counties. The complex is exposed across 30 miles (48 km) of the north flank of the Beartooth Mountain Range. The complex has extensive reserves of chromium ore and has a history of being mined for chromium. More recent mining activity has produced palladium and other platinum group elements.

<span class="mw-page-title-main">Temagamite</span>

Temagamite is a bright white palladium mercury telluride mineral with a hardness of 2+12 on the Mohs scale. Its chemical formula is Pd3HgTe3. It was discovered at the Temagami Mine on Temagami Island, Lake Temagami in 1973, and it represents a rare mineral in the Temagami Greenstone Belt.

Atheneite is a rare palladium, mercury arsenide mineral with the chemical formula (Pd,Hg)3 associated with palladium–gold deposits. Its composition parallels that of arsenopalladinite, isomertieite and meritieite-II.

The Lac des Îles igneous complex of northwestern Ontario, Canada is a layered gabbroic intrusion which is the host for the largest palladium orebody in Canada. The orebody is currently being mined as a combined open pit and underground operation by North American Palladium.

<span class="mw-page-title-main">Braggite</span>

Braggite is a sulfide mineral of platinum, palladium and nickel with chemical formula: S. It is a dense, steel grey, opaque mineral which crystallizes in the tetragonal crystal system. It is the central member in the platinum group end-members cooperite and vysotskite.

Skaergaardite is an intermetallic platinum group mineral with the general chemical formula PdCu. The mineral is named after its discovery location: the Skaergaard intrusion, Kangerdlugssuaq area, East Greenland. The mineral name was approved by the International Mineralogical Association in 2003. The mineral has also been reported in the Duluth intrusion in Minnesota and the Rum layered intrusion in Scotland.

Chrisstanleyite, Ag2Pd3Se4, is a selenide mineral that crystallizes in high saline, acidic hydrothermal solution at low temperatures as part of selenide vein inclusions in and alongside calcite veins. It tends to be found in assemblages of other selenides: jagueite, naumannite, fischesserite, oosterboschite, and tiemannite, and it is a solid solution mineral with jagueite Cu2Pd3Se4 in which it shares a unique crystal structure that has not been identified elsewhere (Paar et al. 1998; Nickel 2002; Paar et al. 2004). Chrisstanleyite and jagueite are unlike the other minerals of the selenide family as they do not have a sulfide analogue (Topa et al. 2006). First discovered by Werner Paar from a sample received from Hope's Nose, Torquay, Devon, England, chrisstanleyite has since been discovered in the Pilbara region of Western Australia and in El Chire, La Rioja, Argentina. Chrisstanleyite was named after the Deputy Head and Associate Keeper at the Department of Mineralogy at The Natural History Museum in London.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

<span class="mw-page-title-main">Ferronickel platinum</span> Rare occurring mineral

Ferronickel platinum is a very rarely occurring minerals from the mineral class of elements (including natural alloys, intermetallic compounds, carbides, nitrides, phosphides and silicides) with the chemical composition Pt2FeNi and thus is chemically seen as a natural alloy, more precisely an intermetallic compound of platinum, nickel and iron in a ratio of 2:1:1.

<span class="mw-page-title-main">Palladium(II) sulfide</span> Chemical compound

Palladium(II) sulfide is a chemical compound of palladium and sulfur with the chemical formula PdS. Like other palladium and platinum chalcogenides, palladium(II) sulfide has complex structural, electrical and magnetic properties.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Mindat mineral data
  3. "Cooperite (MinSocAm)" (PDF). MinSocAm Handbook of Mineralogy. Archived (PDF) from the original on 2012-07-16. Retrieved 11 February 2021.
  4. Handbook of Mineralogy