Covellite | |
---|---|
General | |
Category | Sulfide mineral |
Formula (repeating unit) | CuS (copper monosulfide) |
IMA symbol | Cv [1] |
Strunz classification | 2.CA.05a |
Dana classification | 02.08.12.01 |
Crystal system | Hexagonal |
Crystal class | Dihexagonal dipyramidal (6/mmm) H–M Symbol (6/m 2/m 2/m) |
Space group | P63/mmc |
Unit cell | a = 3.7938 Å, c = 16.341 Å; Z = 6 |
Identification | |
Color | Indigo-blue or darker, commonly highly iridescent, brass-yellow to deep red |
Crystal habit | Thin platy hexagonal crystals and rosettes also massive to granular. |
Cleavage | Perfect on {0001} |
Tenacity | Flexible |
Mohs scale hardness | 1.5–2 |
Luster | Submetallic, inclining to resinous to dull |
Streak | Lead gray |
Diaphaneity | Opaque |
Specific gravity | 4.6–4.8 |
Optical properties | Uniaxial (+) |
Refractive index | nω = 1.450 nε = 2.620 |
Pleochroism | Marked, deep blue to pale blue |
Fusibility | 2.5 |
Other characteristics | Micaceous cleavage |
References | [2] [3] [4] |
Covellite (also known as covelline) is a rare copper sulfide mineral with the formula CuS. [4] This indigo blue mineral is commonly a secondary mineral in limited abundance and although it is not an important ore of copper itself, it is well known to mineral collectors. [4]
The mineral is generally found in zones of secondary enrichment (supergene) of copper sulfide deposits. Commonly found as coatings on chalcocite, chalcopyrite, bornite, enargite, pyrite, and other sulfides, it often occurs as pseudomorphic replacements of other minerals. [5] The first records are from Mount Vesuvius, formally named in 1832 after N. Covelli. [4]
Covellite belongs to the binary copper sulfides group, which has the formula CuxSy and can have a wide-ranging copper/sulfur ratio, from 1:2 to 2:1 (Cu/S). However, this series is by no means continuous and the homogeneity range of covellite CuS is narrow. Materials rich in sulfur CuSx where x~ 1.1- 1.2 do exist, but they exhibit "superstructures", a modulation of the hexagonal ground plane of the structure spanning a number of adjacent unit cells. [6] This indicates that several of covellite's special properties are the result of molecular structure at this level.
As described for copper monosulfide, the assignment of formal oxidation states to the atoms that constitute covellite is deceptive. [7] The formula might seem to suggest the description Cu2+, S2−. In fact the atomic structure shows that copper and sulfur each adopt two different geometries. However photoelectron spectroscopy, magnetic, and electrical properties all indicate the absence of Cu2+ (d9) ions. [7] In contrast to the oxide CuO, the material is not a magnetic semiconductor but a metallic conductor with weak Pauli-paramagnetism. [8] Thus, the mineral is better described as consisting of Cu+ and S− rather than Cu2+ and S2−. Compared to pyrite with a non-closed shell of S− pairing to form S22−, there are only 2/3 of the sulfur atoms held. [7] The other 1/3 remains unpaired and together with Cu atoms forms hexagonal layers reminiscent of the boron nitride (graphite structure). [7] Thus, a description Cu+3S−S22− would seem appropriate with a delocalized hole in the valence band leading to metallic conductivity. Subsequent band structure calculations indicate however that the hole is more localized on the sulfur pairs than on the unpaired sulfur. This means that Cu+3S2−S2− with a mixed sulfur oxidation state -2 and -1/2 is more appropriate. Despite the extended formula of Cu+3S2−S2− from researchers in 1976 and 1993, others have come up with variations, such as Cu+4Cu2+2(S2)2S2. [9] [10]
For a copper sulfide, covellite has a complicated lamellar structure, with alternating layers of CuS and Cu2S2 with copper atoms of trigonal planar (uncommon) and tetrahedral coordination respectively. [10] The layers are connected by S-S bonds (based on Van der Waals forces) known as S2 dimers. [10] The Cu2S2 layers only has one l/3 bond along the c-axis (perpendicular to layers), thus only one bond in that direction to create a perfect cleavage {0001}. [7] The conductivity is greater across layers due to the partially filled 3p orbitals, facilitating electron mobility. [10]
Covellite is commonly found as a secondary copper mineral in deposits. Covellite is known to form in weathering environments in surficial deposits where copper is the primary sulfide. [11] As a primary mineral, the formation of covellite is restricted to hydrothermal conditions, thus rarely found as such in copper ore deposits or as a volcanic sublimate. [8]
Covellite's unique crystal structure is related to its complex oxidative formation conditions, as seen when attempting to synthesize covellite. [12] [13] Its formation also depends on the state and history of the associated sulfides it was derived from. Experimental evidence shows ammonium metavanadate (NH4VO3) to be a potentially important catalyst for covellite's solid state transformation from other copper sulfides. [13] Researchers discovered that covellite can also be produced in the lab under anaerobic conditions by sulfate reducing bacteria at a variety of temperatures. [14] However, further research remains, because although the abundance of covellite may be high, the growth of its crystal size is actually inhibited by physical constraints of the bacteria. [14] It has been experimentally demonstrated that the presence of ammonium vanadates is important in the solid state transformation of other copper sulfides to covellite crystals. [12]
Covellite's occurrence is widespread around the world, with a significant number of localities in Central Europe, China, Australia, Western United States, and Argentina. [4] Many are found close to orogenic belts, where orographic precipitation often plays a role in weathering. An example of primary mineral formation is in hydrothermal veins at depths of 1,150 m found in Silver Bow County, Montana. [4] As a secondary mineral, covellite also forms as descending surface water in the supergene enrichment zone oxidizes and redeposits covellite on hypogene sulfides (pyrite and chalcopyrite) at the same locality. [4] An unusual occurrence of covellite was found replacing organic debris in the red beds of New Mexico. [15]
Nicola Covelli (1790-1829), the discoverer of the mineral, was a professor of botany and chemistry though was interested in geology and volcanology, particularly Mount Vesuvius' eruptions. [4] His studies of its lava led to the discovery of several unknown minerals including covellite. [4]
Covellite was the first identified naturally occurring superconductor. [16] The framework of CuS3 /CuS2 allow for an electron excess that facilitate superconduction during particular states, with exceptionally low thermal loss. Material science is now aware of several of covellite's favorable properties and several researchers are intent on synthesizing covellite. [17] [18] Uses of covellite CuS superconductivity research can be seen in lithium batteries’ cathodes, ammonium gas sensors, and solar electric devices with metal chalcogenide thin films. [19] [20] [21]
Research into alternate cathode material for lithium batteries often examines the complex variations in stoichiometry and tetrahedron layered structure of copper sulfides. [22] Advantages include limited toxicity and low costs. [23] The high electrical conductivity of covellite (10−3 S cm−1) and a high theoretical capacity (560 mAh g−1) with flat discharge curves when cycled versus Li+/Li has been determined to play critical roles for capacity. [23] The variety of methods of formations is also a factor of the low costs. However, issues with cycle stability and kinetics have been limiting the progress of utilizing covellite in mainstream lithium batteries until future developments in its research. [23]
The electron mobility and free hole density characteristics of covellite makes it an attractive choice for nanoplatelets and nanocrystals because they provide the structures the ability to vary in size. [24] [25] However, this ability can be limited by the plate-like structure all copper sulfides possess. [24] Its anisotropic electrical conductivity has been experimentally proven to be greater within layers (i.e. perpendicular to c-axis). [24] Researchers have shown that covellite nanoplatelets of approx. two nm thick, with one unit cell and two copper atoms layers, and diameters around 100 nm are ideal dimensions for electrocatalysts in oxygen reduction reactions (ORR). [24] The basal planes experience preferential oxygen adsorption and larger surface area facilitates electron transfer. [24] In contrast, with ambient conditions, nanoplatelets of dimensions of four nm width and greater than 30 nm diameter have been experimentally synthesized with less cost and energy. [25] Conversely, localized surface plasmon resonances observed in covellite nanoparticles have recently been linked to the stoichiometry-dependent band gap key for nanocrystals. [26] [27] Thus, future chemical sensing devices, electronics, and others instruments are being explored with the use of nanostructures with covellite CuS. [24] [26]
Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.
The mineral pyrite ( PY-ryte), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula FeS2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral.
A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or visible light, and cathodoluminescent substances which glow when struck by an electron beam in a cathode-ray tube.
Chalcopyrite ( KAL-kə-PY-ryte, -koh-) is a copper iron sulfide mineral and the most abundant copper ore mineral. It has the chemical formula CuFeS2 and crystallizes in the tetragonal system. It has a brassy to golden yellow color and a hardness of 3.5 to 4 on the Mohs scale. Its streak is diagnostic as green-tinged black.
Sphalerite is a sulfide mineral with the chemical formula (Zn, Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite, calcite, dolomite, quartz, rhodochrosite, and fluorite.
Molybdenum disulfide is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS
2.
Bornite, also known as peacock ore, is a sulfide mineral with chemical composition Cu5FeS4 that crystallizes in the orthorhombic system (pseudo-cubic).
A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element. Although all group 16 elements of the periodic table are defined as chalcogens, the term chalcogenide is more commonly reserved for sulfides, selenides, tellurides, and polonides, rather than oxides. Many metal ores exist as chalcogenides. Photoconductive chalcogenide glasses are used in xerography. Some pigments and catalysts are also based on chalcogenides. The metal dichalcogenide MoS2 is a common solid lubricant.
Copper monosulfide is a chemical compound of copper and sulfur. It was initially thought to occur in nature as the dark indigo blue mineral covellite. However, it was later shown to be rather a cuprous compound, formula Cu+3S(S2). CuS is a moderate conductor of electricity. A black colloidal precipitate of CuS is formed when hydrogen sulfide, H2S, is bubbled through solutions of Cu(II) salts. It is one of a number of binary compounds of copper and sulfur (see copper sulfide for an overview of this subject), and has attracted interest because of its potential uses in catalysis and photovoltaics.
Djurleite is a copper sulfide mineral of secondary origin with formula Cu31S16 that crystallizes with monoclinic-prismatic symmetry. It is typically massive in form, but does at times develop thin tabular to prismatic crystals. It occurs with other supergene minerals such as chalcocite, covellite and digenite in the enriched zone of copper orebodies. It is a member of the chalcocite group, and very similar to chalcocite, Cu2S, in its composition and properties, but the two minerals can be distinguished from each other by x-ray powder diffraction. Intergrowths and transformations between djurleite, digenite and chalcocite are common. Many of the reported associations of digenite and djurleite, however, identified by powder diffraction, could be anilite and djurleite, as anilite transforms to digenite during grinding.
Molybdenum dioxide is the chemical compound with the formula MoO2. It is a violet-colored solid and is a metallic conductor. The mineralogical form of this compound is called tugarinovite, and is only very rarely found. The discovery and early studies of molybdenum dioxide date back to the late 18th and early 19th centuries. One of the notable figures in the history of molybdenum dioxide is the Hungarian chemist Jakob Joseph Winterl (1732–1809). Winterl, who was a professor of chemistry and botany at the University of Budapest, made significant contributions to the understanding of molybdenum compounds. In 1787, he proposed that copper was a compound of nickel, molybdenum, silica, and a volatile substance, showcasing his interest in molybdenum chemistry.
Carrollite, CuCo2S4, is a sulfide of copper and cobalt, often with substantial substitution of nickel for the metal ions, and a member of the linnaeite group. It is named after the type locality in Carroll County, Maryland, US, at the Patapsco mine, Sykesville.
Copper sulfides describe a family of chemical compounds and minerals with the formula CuxSy. Both minerals and synthetic materials comprise these compounds. Some copper sulfides are economically important ores.
Cubanite is a copper iron sulfide mineral that commonly occurs as a minor alteration mineral in magmatic sulfide deposits. It has the chemical formula CuFe2S3 and when found, it has a bronze to brass-yellow appearance. On the Mohs hardness scale, cubanite falls between 3.5 and 4 and has a orthorhombic crystal system. Cubanite is chemically similar to chalcopyrite; however, it is the less common copper iron sulfide mineral due to crystallization requirements.
Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.
Delafossite is a copper iron oxide mineral with formula CuFeO2 or Cu1+Fe3+O2. It is a member of the delafossite mineral group, which has the general formula ABO2, a group characterized by sheets of linearly coordinated A cations stacked between edge-shared octahedral layers (BO6). Delafossite, along with other minerals of the ABO2 group, is known for its wide range of electrical properties, its conductivity varying from insulating to metallic. Delafossite is usually a secondary mineral that crystallizes in association with oxidized copper and rarely occurs as a primary mineral.
NASICON is an acronym for sodium (Na) super ionic conductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements. NASICON compounds have high ionic conductivities, on the order of 10−3 S/cm, which rival those of liquid electrolytes. They are caused by hopping of Na ions among interstitial sites of the NASICON crystal lattice.
Copper selenide is an inorganic binary compound between copper and selenium. The chemical formula depends on the ratio between the two elements, such as CuSe or Cu2Se.
Quantum dots (QDs) are semiconductor nanoparticles with a size less than 10 nm. They exhibited size-dependent properties especially in the optical absorption and the photoluminescence (PL). Typically, the fluorescence emission peak of the QDs can be tuned by changing their diameters. So far, QDs were consisted of different group elements such as CdTe, CdSe, CdS in the II-VI category, InP or InAs in the III-V category, CuInS2 or AgInS2 in the I–III–VI2 category, and PbSe/PbS in the IV-VI category. These QDs are promising candidates as fluorescent labels in various biological applications such as bioimaging, biosensing and drug delivery.
Rhenium disulfide is an inorganic compound of rhenium and sulfur with the formula ReS2. It has a layered structure where atoms are strongly bonded within each layer. The layers are held together by weak Van der Waals bonds, and can be easily peeled off from the bulk material.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)