Rhodium(III) nitrate

Last updated
Rhodium(III) nitrate [1] [2]
Names
Other names
  • Rhodium trinitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.348 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-397-6
PubChem CID
  • InChI=1S/3NO3.Rh/c3*2-1(3)4;/q3*-1;+3
    Key: VXNYVYJABGOSBX-UHFFFAOYSA-N
  • [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Rh+3]
Properties
Rh(NO3)3
Molar mass 288.92 g/mol
AppearanceYellow solid
Density 1.41 g/cm3
Soluble
Structure
Hexagonal [3]
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H271, H290, H302, H314, H317, H341, H410
P201, P202, P210, P220, P221, P234, P260, P261, P264, P270, P272, P273, P280, P281, P283, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P306+P360, P308+P313, P310, P321, P330, P333+P313, P363, P370+P378, P371+P380+P375, P390, P391, P404, P405, P501
Related compounds
Other anions
Rhodium(III) sulfate
Other cations
Cobalt(III) nitrate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Rhodium(III) nitrate is a inorganic compound, a salt of rhodium and nitric acid with the formula Rh(NO3)3. This anhydrous complex has been the subject of theoretical analysis but has not been isolated. [4] However, a dihydrate and an aqueous solution are known with similar stoichiometry; they contain various hexacoordinated rhodium(III) aqua and nitrate complexes. [3] A number of other rhodium nitrates have been characterized by X-ray crystallography: Rb4[trans-[Rh(H2O)2(NO3)4][Rh(NO3)6] [4] and Cs2[-[Rh(NO3)5]. [5] Rhodium nitrates are of interest because nuclear wastes, which contain rhodium, are recycled by dissolution in nitric acid. [6]

Uses

Rhodium(III) nitrate is used as a precursor to synthesize rhodium. [7]

Related Research Articles

<span class="mw-page-title-main">Lead(II) nitrate</span> Chemical compound

Lead(II) nitrate is an inorganic compound with the chemical formula Pb(NO3)2. It commonly occurs as a colourless crystal or white powder and, unlike most other lead(II) salts, is soluble in water.

<span class="mw-page-title-main">Copper(II) nitrate</span> Chemical compound

Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Mercury(I) nitrate</span> Chemical compound

Mercury(I) nitrate is an inorganic compound, a salt of mercury and nitric acid with the formula Hg2(NO3)2. A yellow solid, the compound is used as a precursor to other Hg22+ complexes. The structure of the hydrate has been determined by X-ray crystallography. It consists of a [H2O-Hg-Hg-OH2]2+ center, with a Hg-Hg distance of 254 pm.

<span class="mw-page-title-main">Cerium nitrates</span> Chemical compound

Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.

<span class="mw-page-title-main">Titanium(IV) nitrate</span> Chemical compound

Titanium nitrate is the inorganic compound with formula Ti(NO3)4. It is a colorless, diamagnetic solid that sublimes readily. It is an unusual example of a volatile binary transition metal nitrate. Ill defined species called titanium nitrate are produced upon dissolution of titanium or its oxides in nitric acid.

<span class="mw-page-title-main">Zirconium nitrate</span> Chemical compound

Zirconium nitrate is a volatile anhydrous transition metal nitrate salt of zirconium with formula Zr(NO3)4. It has alternate names of zirconium tetranitrate, or zirconium(IV) nitrate.

<span class="mw-page-title-main">Thorium(IV) nitrate</span> Chemical compound

Thorium(IV) nitrate is a chemical compound, a salt of thorium and nitric acid with the formula Th(NO3)4. A white solid in its anhydrous form, it can form tetra- and pentahydrates. As a salt of thorium it is weakly radioactive.

<span class="mw-page-title-main">Dichlorotetrakis(pyridine)rhodium(III) chloride</span> Chemical compound

Dichlorotetrakis(pyridine)rhodium(III) chloride is the chloride salt of the coordination complex with the formula [RhCl2(pyridine)4]+. Various hydrates are known, but all are yellow solids. The tetrahydrate initially crystallizes from water. The tetrahydrate converts to the monohydrate upon vacuum drying at 100 °C.

Nitrate chlorides are mixed anion compounds that contain both nitrate (NO3) and chloride (Cl) ions. Various compounds are known, including amino acid salts, and also complexes from iron group, rare-earth, and actinide metals. Complexes are not usually identified as nitrate chlorides, and would be termed chlorido nitrato complexes.

<span class="mw-page-title-main">Iron(II) nitrate</span> Chemical compound

Iron(II) nitrate is the nitrate salt of iron(II). It is commonly encountered as the green hexahydrate, Fe(NO3)2·6H2O, which is a metal aquo complex, however it is not commercially available unlike iron(III) nitrate due to its instability to air. The salt is soluble in water serves as a ready source of ferrous ions.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Plutonium(IV) nitrate</span> Chemical compound

Plutonium (IV) nitrate is an inorganic compound, a salt of plutonium and nitric acid with the chemical formula Pu(NO3)4. The compound dissolves in water and forms crystalline hydrates as dark green crystals.

Neptunium(IV) nitrate is an inorganic compound, a salt of neptunium and nitric acid with the chemical formula Np(NO3)4. The compound forms gray crystals, dissolves in water, and forms crystal hydrates.

<span class="mw-page-title-main">Actinium(III) nitrate</span> Chemical compound

Actinium(III) nitrate is an inorganic compound, actinium salt of nitric acid with the chemical formula Ac(NO3)3. The compound looks like white substance, readily soluble in water.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

<span class="mw-page-title-main">Berkelium(III) nitrate</span> Chemical compound

Berkelium(III) nitrate is the berkelium salt of nitric acid with the formula Bk(NO3)3. It commonly forms the tetrahydrate, Bk(NO3)3·4H2O, which is a light green solid. If heated to 450 °C, it decomposes to berkelium(IV) oxide and 22 milligrams of the solution of this compound is reported to cost one million dollars.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

References

  1. "Rhodium nitrate". PubChem. Retrieved 12 March 2021.
  2. "Rhodium nitrate". American Elements. Retrieved 12 March 2021.
  3. 1 2 G. Bongiovanni; R. Caminiti; D. Atzei; P. Cucca; A. Anedda (1986). "Structure of rhodium(III) nitrate aqueous solutions. An investigation by x-ray diffraction and Raman spectroscopy". The Journal of Physical Chemistry. ACS Publications. 90 (2): 238–243. doi:10.1021/j100274a007 . Retrieved 12 March 2021.
  4. 1 2 Vasilchenko D.; Vasilchenko D.; Vorob'eva S.; Tkachev S.; Baidina I.; Belyaev A.;Korenev S.; Solovyov L.;Vasiliev, A. (2016). "Rhodium(III) Speciation in Concentrated Nitric Acid Solutions". European Journal of Inorganic Chemistry. 2016 (23): 3822 - 3828. doi:10.1002/ejic.201600523.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Vasilchenko, Danila; Vorobieva, Sofia; Baidina, Iraida; Piryazev, Dmitry; Tsipis, Athanassios; Korenev, Sergey (2018). "Structure and properties of a rhodium(III) pentanitrato complex embracing uni- and bidentate nitrato ligands". Polyhedron. 147: 69–74. doi:10.1016/j.poly.2018.03.017. S2CID   104064801.
  6. Samuels, Alex C.; Boele, Cherilynn A.; Bennett, Kevin T.; Clark, Sue B.; Wall, Nathalie A.; Clark, Aurora E. (2014). "Integrated Computational and Experimental Protocol for Understanding Rh(III) Speciation in Hydrochloric and Nitric Acid Solutions". Inorganic Chemistry. 53 (23): 12315–12322. doi:10.1021/ic501408r. PMID   25390284.
  7. "Rhodium(III) nitrate hydrate". Sigma Aldrich. Retrieved 12 March 2021.
HNO3 He
LiNO3 Be(NO3)2 B(NO3)4 RONO2 NO3-
NH4NO3
HOONO2 FNO3
+F
Ne
NaNO3 Mg(NO3)2 Al(NO3)3
Al(NO3)4
SiPS ClONO2
+Cl
Ar
KNO3 Ca(NO3)2 Sc(NO3)3 Ti(NO3)4 VO(NO3)3 Cr(NO3)3 Mn(NO3)2 Fe(NO3)2
Fe(NO3)3
Co(NO3)2
Co(NO3)3
Ni(NO3)2 CuNO3
Cu(NO3)2
Zn(NO3)2 Ga(NO3)3 GeAsSe BrNO3
+Br
Kr
RbNO3 Sr(NO3)2 Y(NO3)3 Zr(NO3)4 NbO(NO3)3 MoO2(NO3)2 Tc Ru(NO3)3 Rh(NO3)3 Pd(NO3)2
Pd(NO3)4
AgNO3
Ag(NO3)2
Cd(NO3)2 In(NO3)3 Sn(NO3)4 Sb(NO3)3 Te INO3
+IO3
Xe(NO3)2
CsNO3 Ba(NO3)2   Lu(NO3)3 Hf(NO3)4 TaO(NO3)3 WO2(NO3)2 ReO3NO3 Os Ir3O(NO3)10 Pt(NO3)2
Pt(NO3)4
Au(NO3)3 Hg2(NO3)2
Hg(NO3)2
TlNO3
Tl(NO3)3
Pb(NO3)2 Bi(NO3)3
BiO(NO3)
Po(NO3)4 AtRn
FrNO3 Ra(NO3)2  LrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
La(NO3)3 Ce(NO3)3
Ce(NO3)4
Pr(NO3)3 Nd(NO3)3 Pm(NO3)3 Sm(NO3)3 Eu(NO3)3 Gd(NO3)3 Tb(NO3)3 Dy(NO3)3 Ho(NO3)3 Er(NO3)3 Tm(NO3)3 Yb(NO3)3
Ac(NO3)3 Th(NO3)4 PaO2(NO3)3 UO2(NO3)2 Np(NO3)4 Pu(NO3)4 Am(NO3)3 Cm(NO3)3 Bk(NO3)3 Cf(NO3)3 EsFmMdNo