Pentaamminechlororhodium dichloride

Last updated
Pentaamminechlororhodium dichloride
RhA5Cl3.svg
Names
Other names
Claus' salt,
Pentaamminechlororhodium dichloride, chloropentaamminerhodium dichloride, chloropentaamminerhodium chloride, chloropentamminerhodium(III) dichloride, chloropentamminerhodium(III) chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.082 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 237-505-2
PubChem CID
  • InChI=1S/3ClH.5H3N.Rh/h3*1H;5*1H3;/q;;;;;;;;+3/p-3
    Key: ICJGGTVWZZBROS-UHFFFAOYSA-K
  • [Cl-].Cl[Ru-3]([NH3+])([NH3+])([NH3+])([NH3+])[NH3+].[Cl-]
Properties
[RhCl(NH3)5]Cl2
Appearanceyellow solid
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Pentamminechlororhodium dichloride is the dichloride salt of the coordination complex [RhCl(NH3)5]2+. It is a yellow, water-soluble solid. The salt is an intermediate in the purification of rhodium from its ores.

As shown by X-ray crystallography, the salt consists of the octahedral complex [RhCl(NH3)5]2+ and two chloride counterions. [1] It forms from the reaction of rhodium trichloride and ammonia in ethanol. [2] Two chloride anions are labile, whereas the coordinated chloride ligand is not.

Treatment of [RhCl(NH3)5]Cl2) with zinc dust in the presence of ammonia gives the hydride complex |[RhH(NH3)5]2+. [2] [3]

Related Research Articles

Iron(II) chloride Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

Wilkinsons catalyst Chemical compound

Wilkinson's catalyst is the common name for chloridotris(triphenylphosphine)rhodium(I), a coordination complex of rhodium with the formula [RhCl(PPh3)3] (Ph = phenyl). It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

Rhodium(III) chloride Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

Metal ammine complex

In coordination chemistry, metal ammine complexes are metal complexes containing at least one ammonia (NH3) ligand. "Ammine" is spelled this way due to historical reasons; in contrast, alkyl or aryl bearing ligands are spelt with a single "m". Almost all metal ions bind ammonia as a ligand, but the most prevalent examples of ammine complexes are for Cr(III), Co(III), Ni(II), Cu(II) as well as several platinum group metals.

Bridging ligand

In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually restricted to small ligands such as pseudohalides or to ligands that are specifically designed to link two metals.

Hexamminecobalt(III) chloride Chemical compound

Hexaamminecobalt(III) chloride is the chemical compound with the formula [Co(NH3)6]Cl3. It is the chloride salt of the coordination complex [Co(NH3)6]3+, which is considered an archetypal "Werner complex", named after the pioneer of coordination chemistry, Alfred Werner. The cation itself is a metal ammine complex with six ammonia ligands attached to the cobalt(III) ion.

Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.

Organoiridium compound

Organoiridium chemistry is the chemistry of organometallic compounds containing an iridium-carbon chemical bond. Organoiridium compounds are relevant to many important processes including olefin hydrogenation and the industrial synthesis of acetic acid. They are also of great academic interest because of the diversity of the reactions and their relevance to the synthesis of fine chemicals.

Organorhodium chemistry

Organorhodium chemistry is the chemistry of organometallic compounds containing a rhodium-carbon chemical bond, and the study of rhodium and rhodium compounds as catalysts in organic reactions.

Rhodocene Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

Metal-phosphine complex

A metal-phosphine complex is a In coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

Chloropentamminecobalt chloride Chemical compound

Chloropentamminecobalt chloride is the dichloride salt of the coordination complex [Co(NH3)5Cl]2+. It is a red-violet, diamagnetic, water-soluble salt. The compound has been of academic and historical interest.

Tris(triphenylphosphine)rhodium carbonyl hydride Chemical compound

Carbonyl hydrido tris(triphenylphosphine)rhodium(I) [Carbonyl(hydrido)tris(triphenylphosphane)rhodium(I)] is an organorhodium compound with the formula [RhH(CO)(PPh3)3] (Ph = C6H5). It is a yellow, benzene-soluble solid, which is used industrially for hydroformylation.

Rhodium carbonyl chloride Chemical compound

Rhodium carbonyl chloride is an organorhodium compound with the formula Rh2Cl2(CO)4. It is a red-brown volatile solid that is soluble in nonpolar organic solvents. It is a precursor to other rhodium carbonyl complexes, some of which are useful in homogeneous catalysis.

Pentamethylcyclopentadienyl rhodium dichloride dimer Chemical compound

Pentamethylcyclopentadienyl rhodium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5RhCl2)]2, commonly abbreviated [Cp*RhCl2]2 This dark red air-stable diamagnetic solid is a reagent in organometallic chemistry.

Transition metal nitrile complexes Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

Bis(triphenylphosphine)rhodium carbonyl chloride Chemical compound

Bis(triphenylphosphine)rhodium carbonyl chloride is the organorhodium complex with the formula [RhCl(CO)(PPh3)2]. This complex of rhodium(I) is a bright yellow, air-stable solid. It is the Rh analogue of Vaska's complex, the corresponding iridium complex. With regards to its structure, the complex is square planar with mutually trans triphenylphosphine (PPh3) ligands. The complex is a versatile homogeneous catalyst.

Europium dichloride Chemical compound

Europium dichloride is an inorganic compound with a chemical formula EuCl2. When it is irradiated by ultraviolet light, it has bright blue fluorescence.

Dichlorotetrakis(pyridine)rhodium(III) chloride Chemical compound

Dichlorotetrakis(pyridine)rhodium(III) chloride is the chloride salt of the coordination complex with the formula [RhCl2(pyridine)4]+. Various hydrates are known, but all are yellow solids. The tetrahydrate initially crystallizes from water. The tetrahydrate converts to the monohydrate upon vacuum drying at 100 °C.

Rhodium(III) bromide Chemical compound

Rhodium(III) bromide refers to inorganic compounds of the formula RhBr3(H2O)n where n = 0 or approximately three. Both forms are brown solids. The hydrate is soluble in water and lower alcohols. It is used to prepare rhodium bromide complexes. Rhodium bromides are similar to the chlorides, but have attracted little academic or commercial attention.

References

  1. Hambley, Trevor W.; Lay, Peter A. (1986). "Comparisons of pi-Bonding and Hydrogen Bonding in Isomorphous Compounds: [M(NH3)5Cl]Cl2 (M = Cr, Co, Rh, Ir, Ru, Os)". Inorganic Chemistry. 25 (25): 4553–4558. doi:10.1021/ic00245a020.
  2. 1 2 Osborn, J. A.; Thomas, K.; Wilkinson, G. (1972). "Pentaamminechlororhodium(III) Dichloride and Pentaamminehydridorhodium(III) Sulfate". Inorganic Syntheses. 13: 213–215. doi:10.1002/9780470132449.ch43.
  3. Thomas, K.; Osborn, J. A.; Powell, A. R.; Wilkinson, G. (1968). "The Preparation of Hydridopentammine- and Hydridoaquotetramminerhodium(III) Sulphates and Other Salts; the Formation of Alkyl and Fluoroalkyl Derivatives". Journal of the Chemical Society A: 1801. doi:10.1039/j19680001801.