Actinium(III) nitrate

Last updated
Actinium(III) nitrate
Actinium(III) nitrate solid.png
The glass is discolored due to the high radiation of actinium
Names
Other names
Actinium nitrate
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/Ac.3NO3/c;3*2-1(3)4/q;3*-1
    Key: AEFUOHSKBCUMLM-UHFFFAOYSA-N
  • [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ac]
Properties
Ac(NO3)3
Molar mass 413.04
AppearanceWhite substance
Soluble
Hazards
GHS labelling:
Warning
Related compounds
Related compounds
Thorium(IV) nitrate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Actinium(III) nitrate is an inorganic compound, actinium salt of nitric acid with the chemical formula Ac(NO3)3. The compound looks like white substance, readily soluble in water. [1]

Contents

Synthesis

Actinium nitrate can be obtained by dissolving actinium or actinium hydroxide in nitric acid.

Properties

Actinium(III) nitrate decomposes on heating above 600 °C:

This salt is used as a source of Ac3+ ions to obtain insoluble actinium compounds by precipitation from aqueous solutions. [2]

Related Research Articles

<span class="mw-page-title-main">Actinium</span> Chemical element, symbol Ac and atomic number 89

Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name emanium; the element got its name by being wrongly identified with a substance André-Louis Debierne found in 1899 and called actinium. Actinium gave the name to the actinide series, a set of 15 elements between actinium and lawrencium in the periodic table. Together with polonium, radium, and radon, actinium was one of the first non-primordial radioactive elements to be isolated.

The actinide or actinoid series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Cerium nitrates</span> Chemical compound

Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.

<span class="mw-page-title-main">Actinide chemistry</span> Branch of nuclear chemistry

Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.

<span class="mw-page-title-main">Actinium(III) fluoride</span> Chemical compound

Actinium(III) fluoride (AcF3) is an inorganic compound, a salt of actinium and fluorine.

<span class="mw-page-title-main">Iron(II) nitrate</span> Chemical compound

Iron(II) nitrate is the nitrate salt of iron(II). It is commonly encountered as the green hexahydrate, Fe(NO3)2·6H2O, which is a metal aquo complex, however it is not commercially available unlike iron(III) nitrate due to its instability to air. The salt is soluble in water serves as a ready source of ferrous ions.

Rhodium(III) nitrate is a inorganic compound, a salt of rhodium and nitric acid with the formula Rh(NO3)3. This anhydrous complex has been the subject of theoretical analysis but has not been isolated. However, a dihydrate and an aqueous solution are known with similar stoichiometry; they contain various hexacoordinated rhodium(III) aqua and nitrate complexes. A number of other rhodium nitrates have been characterized by X-ray crystallography: Rb4[trans-[Rh(H2O)2(NO3)4][Rh(NO3)6] and Cs2[-[Rh(NO3)5]. Rhodium nitrates are of interest because nuclear wastes, which contain rhodium, are recycled by dissolution in nitric acid.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

Samarium(III) oxalate is an inorganic compound, a salt of samarium and oxalic acid with the formula Sm2(C2O4)3. The compound does not dissolve in water, forms a crystalline hydrate with yellow crystals.

Neptunium(IV) nitrate is an inorganic compound, a salt of neptunium and nitric acid with the chemical formula Np(NO3)4. The compound forms gray crystals, dissolves in water, and forms crystal hydrates.

<span class="mw-page-title-main">Dysprosium(III) nitrate</span> Chemical compound

Dysprosium(III) nitrate is an inorganic compound, a salt of dysprosium and nitric acid with the chemical formula Dy(NO3)3. The compound forms yellowish crystals, dissolves in water, forms a crystalline hydrate.

<span class="mw-page-title-main">Holmium(III) nitrate</span> Chemical compound

Holmium (III) nitrate is an inorganic compound, a salt of holmium and nitric acid with the chemical formula Ho(NO3)3. The compound forms yellowish crystals, dissolves in water, also forms crystalline hydrates.

<span class="mw-page-title-main">Ytterbium(III) nitrate</span> Chemical compound

Ytterbium(III) nitrate is an inorganic compound, a salt of ytterbium and nitric acid with the chemical formula Yb(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates.

Lutetium(III) nitrate is an inorganic compound, a salt of lutetium and nitric acid with the chemical formula Lu(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates. The compound is poisonous.

Erbium(III) nitrate is an inorganic compound, a salt of erbium and nitric acid with the chemical formula Er(NO3)3. The compound forms pink crystals, readily soluble in water, also forms crystalline hydrates.

Polonium tetranitrate is an inorganic compound, a salt of polonium and nitric acid with the chemical formula Po(NO3)4. The compound is radioactive, forms white crystals.

Cobalt compounds are chemical compounds formed by cobalt with other elements. In the compound, the most stable oxidation state of cobalt is the +2 oxidation state, and in the presence of specific ligands, there are also stable compounds with +3 valence. In addition, there are cobalt compounds in high oxidation states +4, +5 and low oxidation states -1, 0, +1.

Actinium compounds are compounds containing the element actinium (Ac). Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. Except for AcPO4, they are all similar to the corresponding lanthanum compounds. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.

References

  1. Ferrier, Maryline G.; Stein, Benjamin W.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Engle, Jonathan W.; John, Kevin D.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Redman, Lindsay N. (22 March 2017). "Synthesis and Characterization of the Actinium Aquo Ion". ACS Central Science . 3 (3): 176–185. doi:10.1021/acscentsci.6b00356. ISSN   2374-7943. PMC   5364452 . PMID   28386595.
  2. Salutsky, M. L.; Kirby, H. W. (1 November 1956). "Precipitation of Actinium Oxalate from Homogeneous Solution". Analytical Chemistry . 28 (11): 1780–1782. doi:10.1021/ac60119a044. ISSN   0003-2700 . Retrieved 18 August 2021.
HNO3 He
LiNO3 Be(NO3)2 B(NO3)4 RONO2 NO3
NH4NO3
HOONO2 FNO3 Ne
NaNO3 Mg(NO3)2 Al(NO3)3
Al(NO3)4
SiPS ClONO2 Ar
KNO3 Ca(NO3)2 Sc(NO3)3 Ti(NO3)4 VO(NO3)3 Cr(NO3)3 Mn(NO3)2 Fe(NO3)2
Fe(NO3)3
Co(NO3)2
Co(NO3)3
Ni(NO3)2 CuNO3
Cu(NO3)2
Zn(NO3)2 Ga(NO3)3 GeAsSe BrNO3 Kr
RbNO3 Sr(NO3)2 Y(NO3)3 Zr(NO3)4 NbO(NO3)3 MoO2(NO3)2 Tc Ru(NO3)3 Rh(NO3)3 Pd(NO3)2
Pd(NO3)4
AgNO3
Ag(NO3)2
Cd(NO3)2 In(NO3)3 Sn(NO3)4 Sb(NO3)3 Te INO3 Xe(NO3)2
CsNO3 Ba(NO3)2   Lu(NO3)3 Hf(NO3)4 TaO(NO3)3 WReOsIr Pt(NO3)2
Pt(NO3)4
Au(NO3)3 Hg2(NO3)2
Hg(NO3)2
TlNO3
Tl(NO3)3
Pb(NO3)2 Bi(NO3)3
BiO(NO3)
Po(NO3)4 AtRn
FrNO3 Ra(NO3)2  LrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
La(NO3)3 Ce(NO3)3
Ce(NO3)4
Pr(NO3)3 Nd(NO3)3 Pm(NO3)3 Sm(NO3)3 Eu(NO3)3 Gd(NO3)3 Tb(NO3)3 Dy(NO3)3 Ho(NO3)3 Er(NO3)3 Tm(NO3)3 Yb(NO3)3
Ac(NO3)3 Th(NO3)4 PaO2(NO3)3 UO2(NO3)2 Np(NO3)4 Pu(NO3)4 Am(NO3)3 Cm(NO3)3 Bk(NO3)3 CfEsFmMdNo