Bismuthyl (ion)

Last updated
Bismuthyl (ion)
Bismuthyl.jpg
Bismuthyl (structural formula)
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/Bi.O/q+1;
    Key: AFQPDONMRFOLIJ-UHFFFAOYSA-N
  • [Bi+]=O
Properties
BiO+
Molar mass 224.979 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bismuthyl is an inorganic oxygen-containing singly charged ion with the chemical formula BiO+, and is an oxycation of bismuth in the +3 oxidation state. Most often it is formed during the hydrolysis of trivalent bismuth salts, primarily nitrate, chloride and other halides. In chemical compounds, bismuthyl plays the role of a monovalent cation.

Contents

In inorganic chemistry bismuthyl has been used to describe compounds such as BiOCl which were assumed to contain the diatomic bismuthyl, BiO+, cation, that was also presumed to exist in aqueous solution. [1]

This diatomic ion is not now believed to exist. [2] Unlike other inorganic radicals such as hydroxyl, carbonyl, chromyl, uranyl or vanadyl, according to the current IUPAC rules, the name bismuthyl for BiO+ is not recommended, since individual molecules of these groups are not identifiable but atomic layers of Bi and O. Their presence in compounds preferably should be referred to as oxides. [3] :16 However, the latter position remains controversial. For example, to this day the Russian school of inorganic chemistry still operates with bismuthyl and stibil (antimonyl) cations as actually existing radicals.

In the history of chemistry

Until the last quarter of the 20th century, the real existence of the bismuthyl ion was not in doubt; it was fully present in all reference books and manuals on inorganic chemistry, including German and English ones. The most famous compound of this class was considered bismuthyl chloride, the chemical properties of which were studied in detail and were considered titular for all other bismuth compounds. [4] :144 In addition, the compound with the calculation formula BiOCl exists in nature in the form of bismoclitea, one of the secondary metamorphosed minerals from the class of halides.

In the fundamental three-volume book “Modern Inorganic Chemistry” by Nobel laureate Frank Cotton and Geoffrey Wilkinson, summarizing the latest achievements of science in the first half of the 20th century, the real existence of the bismuthyl cation is not only not questioned, but is not even discussed in any detail. This inorganic radical is mentioned without further explanation and is by default considered a legacy of the fundamental corpus of inorganic chemistry of the 19th century. First of all, the authors note that of the entire group of pnictogens, only bismuth has a truly extensive and detailed cation chemistry. According to the authors, aqueous solutions of bismuth salts contain well-defined hydrated cations. Moreover, bismuthyl in the newest version at that time also acquires quasi-polymeric properties, connecting into chains or hexagons. For example, in neutral perchlorate solutions the main ions are [Bi6O6]6+ or its hydrated form [Bi6(OH)12]6+, and at higher pH values [Bi6O6(OH)3]3+ are formed. [5] :II:364

In mineralogy and geochemistry

Bismoclite (Brazil) Bismoclite2.jpg
Bismoclite (Brazil)

Previously, it was believed that bismuthyl plays almost the main role in the geochemistry of bismuth and metamorphic processes taking place in a liquid medium. Already in ore waters, bismuth and its main compounds are oxidized, forming a sparingly soluble oxychloride — bismoclite, which, when mixed with bicarbonate background waters, is replaced by an even more sparingly soluble — bismuthite. As a result, small amounts of bismuth circulate in both ore and background waters precisely in the form of bismuthyl ion. [7] :291

The migration of bismuth in neutral and slightly alkaline groundwater in the form of a simple bismuth ion is hindered as a result of the low threshold pH for the precipitation of its hydroxide from solution. According to thermodynamic calculations carried out in the late 1960s for the stability fields of native bismuth, bismuthinite, bismuth oxides and bismuthyl chloride, in the pH–Eh coordinates the main ion form of bismuth migration was the bismuthyl ion BiO+. [8] According to calculations, it occupied a leading place in the metabolic and oxidative processes that constantly take place in the erosion zones of bismuth minerals.

Bismuthyl chloride, along with BiO(NO)3 nitrate, which was originally considered the title compound of this cation, actually exists in nature in the form of bismoclite, one of the secondary metamorphosed minerals from the class of halides. According to the chemical formula conventionally recognized back in the 19th century, bismoclite consisted precisely of bismuthyl cations (BiO+) and chlorine anions (Cl). Thus, previously the chemical composition of this mineral was traditionally called bismuthyl chloride. However, by the end of the 20th century, based on the results of targeted chemical analyses, the reality of the existence of the diatomic bismuthyl ion was called into question. [9] Since then, bismoclite has been characterized as bismuth oxide-chloride (oxychloride). In the same way, it was proposed to rename all similar bismuthyl compounds, primarily the remaining halides (from fluoride to iodide) and nitrate.

Chemical properties

<<Bismuthyl nitrate>> Bismuthyl nitrate.svg

The classic method for obtaining bismuthyl salts was the treatment of bismuth oxide (Bi
2
O
3
) with nitric acid. This reaction produces bismuthyl salts such as BiO(NO3 and Bi2O2(OH)(NO3) as end products. The same bismuthyl salts precipitate when strongly acidic solutions of various bismuth compounds are diluted. [5] :II:364

The formation of bismuthyl was also considered to be a process that constantly occurs as a result of hydrolysis. Thus, bismuth nitrate, Bi(NO3)3 • 5H20, crystallizes from a solution resulting from the reaction of bismuth with nitric acid. It dissolves in a small amount of water acidified with nitric acid. However, when the solution is diluted with larger quantities of water, hydrolysis occurs and basic salts precipitate, the composition of which depends on the conditions. A salt of the composition BiONO3 is often formed. [10] :416

Bismuthyl chloride (BiOCl) is readily soluble in hydrochloric acid. Moreover, this process, like nitrate, proceeds through a reversible reaction; a shift of the reaction to the left or right also occurs along the line of hydrolysis, depending on the relative amount of water and the (residual) hydrochloric acid present. Adding water to a slightly acidic solution of ВіСl3 immediately causes the appearance of a white precipitate of basic bismuth chloride, BiOCl. When hydrochloric acid is added, the precipitate dissolves again, but it immediately falls out when more water is added. All other bismuth compounds behave in aqueous solutions similarly to chloride. [4] :144

In more detail, the ongoing hydrolysis reactions using bismuth chloride as an example are usually represented by the following reversible equations:

BiCl3 + H2O ↔ BiOHCl2 + HCl
BiOHCl2 + H2O ↔ Bi(OH)2Cl + HCl

The resulting dihydroxobismuth chloride is unstable and easily splits off a water molecule:

Bi(OH)2Cl = BiOCl + H2O

The output is a basic salt containing a bismuthyl cation ВiO+, i.e. ″bismuthyl″ chloride.

Bismuth nitrate is hydrolyzed in the same way, forming the main salt of the composition BiONO3. However, the reaction with it in an aqueous environment is much less successful and does not have such a clear result, since the resulting bismuthyl nitrate is much more soluble in water than its chloride.

The hydrolysis reaction of bismuth salts is reversible, and therefore when heated and hydrochloric acid is added to the precipitate, it dissolves again:

BiOCl + 2HCl = BiCl3 + H2O

When the solution is diluted again with water, a precipitate of the basic salt precipitates again. [11] :104

The main mechanism in such reactions is the pronounced amphotericity of X(ОН)3 hydroxides for arsenic and antimony and the basic properties for bismuth, as a result of which the salts are susceptible to hydrolysis, especially in the case of antimony and bismuth, which are characterized by the formation of antimonyl cations SbO+ and bismuthyl BiO+. According to this principle, Bi(OH)3, losing water when heated, turns into yellow bismuthyl hydroxide with the formula BiO(OH), sparingly soluble in water, which upon further dehydration forms Bi2O3 oxide. [12] :129

At elevated temperatures, the vapors of the metal combine rapidly with oxygen, forming the yellow trioxide, Bi
2
O
3
. [13] [14] When molten, at temperatures above 710 °C, this oxide corrodes any metal oxide and even platinum. [15] On reaction with a base, it forms two series of oxyanions: BiO
2
, which is polymeric and forms linear chains, and BiO3−
3
. The anion in Li
3
BiO
3
is a cubic octameric anion, Bi
8
O24−
24
, whereas the anion in Na
3
BiO
3
is tetrameric. [1]

In addition to bismuthyl itself, thiocompounds corresponding to bismuthyl salts are also considered indicative for the chemistry of bismuth, for example, gray thiobismuthyl chloride with the formula BiSCl and others similar to it. These substances, unlike bismuthyl salts, are very stable with respect to water, and can be easily prepared by the action of hydrogen sulfide gas on the corresponding bismuth trihalide. [16] :278

Practical significance

Related Research Articles

<span class="mw-page-title-main">Ammonium</span> Chemical compound

Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) molecular ion with the chemical formula NH+4 or [NH4]+. It is formed by the addition of a proton to ammonia. Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic or other groups. Not only is ammonium a source of nitrogen and a key metabolite for many living organisms, but it is an integral part of the global nitrogen cycle. As such, human impact in recent years could have an effect on the biological communities that depend on it.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four polymorphs of anhydrous zinc chloride.

<span class="mw-page-title-main">Hypochlorite</span> Anion

In chemistry, hypochlorite, or chloroxide is an anion with the chemical formula ClO. It combines with a number of cations to form hypochlorite salts. Common examples include sodium hypochlorite and calcium hypochlorite. The Cl-O distance in ClO is 1.69 Å.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Ferrate(VI)</span> Ion

Ferrate(VI) is the inorganic anion with the chemical formula [FeO4]2−. It is photosensitive, contributes a pale violet colour to compounds and solutions containing it and is one of the strongest water-stable oxidizing species known. Although it is classified as a weak base, concentrated solutions containing ferrate(VI) are corrosive and attack the skin and are only stable at high pH. It is similar to the somewhat more stable permanganate.

<span class="mw-page-title-main">Silver oxide</span> Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

A nitrate test is a chemical test used to determine the presence of nitrate ion in solution. Testing for the presence of nitrate via wet chemistry is generally difficult compared with testing for other anions, as almost all nitrates are soluble in water. In contrast, many common ions give insoluble salts, e.g. halides precipitate with silver, and sulfate precipitate with barium.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Bismuth chloride</span> Chemical compound

Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.

<span class="mw-page-title-main">Barium ferrate</span> Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

<span class="mw-page-title-main">Bismoclite</span>

Bismoclite is a bismuth oxohalide mineral with formula BiOCl. It is the naturally occurring form of bismuth oxychloride. The name was derived from its chemical constituents. It is a secondary bismuth mineral first thought to be composed of bismuthyl ions (BiO+) and chloride anions, however, the existence of the diatomic bismuthyl ion is doubtful.

<span class="mw-page-title-main">Bismuth oxychloride</span> Chemical compound

Bismuth oxychloride is an inorganic compound of bismuth with the formula BiOCl. It is a lustrous white solid used since antiquity, notably in ancient Egypt. Light wave interference from its plate-like structure gives a pearly iridescent light reflectivity similar to nacre. Previously, until the last decade of the twentieth century, bismuth oxochloride was known as bismuthyl chloride. It is also known as pigment pearl white.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

<span class="mw-page-title-main">Bismuth oxynitrate</span> Chemical compound

Bismuth oxynitrate is the name applied to a number of compounds that contain Bi3+, nitrate ions and oxide ions and which can be considered as compounds formed from Bi2O3, N2O5 and H2O. Other names for bismuth oxynitrate include bismuth subnitrate and bismuthyl nitrate. In older texts bismuth oxynitrate is often simply described as BiONO3 or basic bismuth nitrate. Bismuth oxynitrate was once called magisterium bismuti or bismutum subnitricum, and was used as a white pigment, in beauty care, and as a gentle disinfectant for internal and external use. It is also used to form Dragendorff's reagent, which is used as a TLC stain.

<span class="mw-page-title-main">Bismuth compounds</span>

Bismuth forms mainly trivalent and a few pentavalent compounds. Many of its chemical properties are similar to those of arsenic and antimony, although much less toxic.

Astatine compounds are compounds that contain the element astatine (At). As this element is very radioactive, few compounds have been studied. Less reactive than iodine, astatine is the least reactive of the halogens. Its compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3, and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

References

  1. 1 2 Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). Nicholas C. Norman (ed.). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 67–84. ISBN   0-7514-0389-X.
  2. Wiberg, Egon; Holleman, A. F.; Wiberg, Nils (2001). Inorganic chemistry. Academic Press. ISBN   0-12-352651-5.
  3. V. A. Kompantsev, L. P. Gokzhaeva, G. N. Shestakov, N. I. Krikova. Introduction to Inorganic Chemistry. — Pyatigorsk State Pharmaceutical Academy, 1996
  4. 1 2 Kurzes lehrbuch der analytischen chemie von prof. dr. F.P. Treadwell. I bd. «Qualitative analyse». — St. Petersburg: K. L. Ricker, 1904 — 524 S.
  5. 1 2 Frank Cotton, Geoffrey Wilkinson . Modern Inorganic Chemistry, part 2. — Moscow: Mir, 1969.
  6. Yellow-orange bismoclite interspersed with bismuthinite from pegmatite. Alto do Guiz, Ecuador, Rio Grande do Norte, northeastern region, Brazil. Approximate image size (length): 2 cm.
  7. Vinogradov A. P. . I International Geochemical Congress, USSR, Moscow, July 20–25, 1971. Materials of reports. Book 1-2. Sedimentary processes.
  8. Babaev K. L. Patterns of distribution of endogenous mineral deposits in Central Asia. Uzbek Geological Journal. ― Tashkent: Publishing House of the Academy of Sciences of the Uzbek SSR, 1973. — p.24
  9. Wiberg, Nils; Holleman, A. F. (2001-01-01). Inorganic chemistry. Academic Press. ISBN   0123526515. OCLC   48056955.
  10. N. Glinka . General chemistry: Textbook for universities (ed. V.A.Rabinovich, 16th edition, corrected and expanded). ― Leningrad: Chemistry, 1973. ― 720 S.
  11. Nina Nikitina, Tatiana Khakhanina. Analytical chemistry. 2-nd edition, revised and additional. ― Moscow: Yurayt Publishing House, 2010. — 277 p.
  12. Molodkin A. K., Esina N. Ya. Chemistry of elements IA-VIIIA: textbook for chemical specialties of universities. 2nd ed., stereotypical. — Moscow: Peoples' Friendship University of Russia, 2018. — 182 p.
  13. Wiberg, p. 768.
  14. Greenwood, p. 553.
  15. Krüger, p. 185
  16. Lyudmila Tomina, Igor Rosin. General and inorganic chemistry in 3 volumes. Volume 3. Chemistry of p-elements. ― Moscow: Yurayt Publishing House, 2023. — 436 S.

See also