![]() | |
Names | |
---|---|
IUPAC name Strontium chloride | |
Other names Strontium(II) chloride | |
Identifiers | |
| |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.030.870 |
EC Number |
|
PubChem CID | |
UNII |
|
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
SrCl2 | |
Molar mass | 158.53 g/mol (anhydrous) 266.62 g/mol (hexahydrate) |
Appearance | White crystalline solid |
Density | 3.052 g/cm3 (anhydrous, monoclinic form) 2.672 g/cm3 (dihydrate) 1.930 g/cm3 (hexahydrate) |
Melting point | 874 °C (1,605 °F; 1,147 K) (anhydrous) 61 °C (hexahydrate) |
Boiling point | 1,250 °C (2,280 °F; 1,520 K) (anhydrous) |
anhydrous: 53.8 g/100 mL (20 °C) hexahydrate: 106 g/100 mL (0 °C) 206 g/100 mL (40 °C) | |
Solubility | ethanol: very slightly soluble acetone: very slightly soluble ammonia: insoluble |
−63.0·10−6 cm3/mol | |
Refractive index (nD) | 1.650 (anhydrous) 1.594 (dihydrate) 1.536 (hexahydrate) [1] |
Structure | |
Deformed rutile structure | |
octahedral (six-coordinate) | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Irritant |
NFPA 704 (fire diamond) | |
Flash point | N/A |
Related compounds | |
Other anions | Strontium fluoride Strontium bromide Strontium iodide |
Other cations | Beryllium chloride Magnesium chloride Calcium chloride Barium chloride Radium chloride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Strontium chloride (SrCl2) is a salt of strontium and chlorine.
It is a 'typical' salt, forming neutral aqueous solutions. As with all compounds of strontium, this salt emits a bright red colour in flame, and is commonly used in fireworks to that effect.
Its chemical properties are intermediate between those for barium chloride, which is more toxic, and calcium chloride.
Strontium chloride can be prepared by treating aqueous strontium hydroxide or strontium carbonate with hydrochloric acid:
Crystallization from cold aqueous solution gives the hexahydrate, SrCl2·6H2O. Dehydration of this salt occurs in stages, commencing above 61 °C (142 °F). Full dehydration occurs at 320 °C (608 °F). [2]
The crystalline solid adopts a fluorite structure. [3] [4] [5] In the vapour phase the SrCl2 molecule is non-linear with a Cl-Sr-Cl angle of approximately 130°. [6] This is an exception to VSEPR theory which would predict a linear structure. Ab initio calculations have been cited to propose that contributions from d orbitals in the shell below the valence shell are responsible. [7] Another proposal is that polarisation of the electron core of the strontium atom causes a distortion of the core electron density that interacts with the Sr-Cl bonds. [8]
Strontium chloride is a precursor to other compounds of strontium, such as yellow strontium chromate, strontium carbonate, and strontium sulfate. Exposure of strontium chloride to the sodium salt of the desired anion (or alternately carbon dioxide gas to form the carbonate) leads to precipitation of the salt: [9] [2]
Strontium chloride is often used as a red colouring agent in pyrotechnics. It imparts a much more intense red colour to the flames than most other alternatives. It is employed in small quantities in glass-making and metallurgy. The radioactive isotope strontium-89, used for the treatment of bone cancer, is usually administered in the form of strontium chloride. Seawater aquaria require small amounts of strontium chloride, which is consumed during the growth of certain plankton.
SrCl2 is useful in reducing tooth sensitivity by forming a barrier over microscopic tubules in the dentin containing nerve endings that have become exposed by gum recession. Known in the U.S. as Elecol and Sensodyne, these products are called "strontium chloride toothpastes", although most now use saltpeter (KNO3) instead which works as an analgesic rather than a barrier. [10]
Brief strontium chloride exposure induces parthenogenetic activation of oocytes [11] which is used in developmental biological research.
A commercial company is using a strontium chloride-based artificial solid called AdAmmine as a means to store ammonium at low pressure, mainly for use in NOx emission reduction on Diesel vehicles. They claim that their patented material can also be made from some other salts, but they have chosen strontium chloride for mass production. [12] Earlier company research also considered using the stored ammonium as a means to store synthetic Ammonium fuel under the trademark HydrAmmine and the press name "hydrogen tablet", however, this aspect has not been commercialized. [13] Their processes and materials are patented. Their early experiments used magnesium chloride, and is also mentioned in that article.
Strontium chloride is used with citric acid in soil testing as an universal extractant of plant nutrients. [14]
An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.
An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions.
Perchloric acid is a mineral acid with the formula HClO4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.
Sodium carbonate, Na2CO3, (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield moderately alkaline solutions in water. Historically, it was extracted from the ashes of plants growing in sodium-rich soils. Because the ashes of these sodium-rich plants were noticeably different from ashes of wood (once used to produce potash), sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process.
The compound hydrogen chloride has the chemical formula HCl and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride gas and hydrochloric acid are important in technology and industry. Hydrochloric acid, the aqueous solution of hydrogen chloride, is also commonly given the formula HCl.
Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.
Praseodymium(III) chloride is the inorganic compound with the formula PrCl3. Like other lanthanide trichlorides, it exists both in the anhydrous and hydrated forms. It is a blue-green solid that rapidly absorbs water on exposure to moist air to form a light green heptahydrate.
Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).
Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.
Samarium(III) chloride, also known as samarium trichloride, is an inorganic compound of samarium and chloride. It is a pale yellow salt that rapidly absorbs water to form a hexahydrate, SmCl3.6H2O. The compound has few practical applications but is used in laboratories for research on new compounds of samarium.
Copper(II) chloride is the chemical compound with the chemical formula CuCl2. The anhydrous form is yellowish brown but slowly absorbs moisture to form a blue-green dihydrate.
Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2SiF
6. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.
Strontium carbonate (SrCO3) is the carbonate salt of strontium that has the appearance of a white or grey powder. It occurs in nature as the mineral strontianite.
Strontium sulfate (SrSO4) is the sulfate salt of strontium. It is a white crystalline powder and occurs in nature as the mineral celestine. It is poorly soluble in water to the extent of 1 part in 8,800. It is more soluble in dilute HCl and nitric acid and appreciably soluble in alkali chloride solutions (e.g. sodium chloride).
Calcium chlorate is the calcium salt of chloric acid, with the chemical formula Ca(ClO3)2. Like other chlorates, it is a strong oxidizer.
Monosodium phosphate (MSP), also known as monobasic sodium phosphate and sodium dihydrogen phosphate, is an inorganic compound of sodium with a dihydrogen phosphate (H2PO4−) anion. One of many sodium phosphates, it is a common industrial chemical. The salt exists in an anhydrous form, as well as mono- and dihydrates.
Strontium sulfide is the inorganic compound with the formula SrS. It is a white solid. The compound is an intermediate in the conversion of strontium sulfate, the main strontium ore called celestite, to other more useful compounds.
Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the digestive systems of most animal species, including humans. Hydrochloric acid is an important laboratory reagent and industrial chemical.