Diboron tetrachloride

Last updated
Diboron tetrachloride
Diboron-tetrachloride-2D.svg
Diboron-tetrachloride-from-xtal-Mercury-3D-balls.png
Diboron-tetrachloride-from-xtal-Mercury-3D-sf.png
Names
Preferred IUPAC name
Diboron tetrachloride
Systematic IUPAC name
Tetrachlorodiborane
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/B2Cl4/c3-1(4)2(5)6
    Key: LCWVIHDXYOFGEG-UHFFFAOYSA-N
  • InChI=1S/B2Cl4/c3-1(4)2(5)6
    Key: LCWVIHDXYOFGEG-UHFFFAOYAN
  • ClB(Cl)B(Cl)Cl
Properties
B2Cl4
Molar mass 163.433 g/mol
Appearancecolorless liquid
Density 1.5 g/cm3 (0 °C)
Melting point −92.6 °C (−134.7 °F; 180.6 K)
Boiling point 65.5 °C (149.9 °F; 338.6 K)
Thermochemistry
137.7 J/mol K
232.3 J/mol K
-523 kJ/mol
-468.8 kJ/mol
Related compounds
Related compounds
Diboron tetrafluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Diboron tetrachloride is a chemical compound with the formula B2Cl4. It is a colorless liquid. [1]

Contents

Synthesis

The modern synthesis involves dechlorination of boron trichloride using copper. [2]

It can also be formed by the electrical discharge procedure of boron trichloride at low temperatures: [1] [3]

BCl3 → BCl2 + Cl
Cl + Hg (electrode) → HgCl or HgCl2
2 BCl2 → B2Cl4

Reactions

The compound is used as a reagent for the synthesis of organoboron compounds. For instance, diboron tetrachloride reacts with ethylene: [4]

CH2=CH2 + B2Cl4 → Cl2B–CH2–CH2–BCl2

The compound absorbs hydrogen quickly at room temperature: [3]

3 B2Cl4 + 3 H2 → B2H6 + 4 BCl3

Related Research Articles

Diborane Chemical compound

Diborane(6), generally known as diborane, is the chemical compound consisting of boron and hydrogen with the formula B2H6. It is a colorless, pyrophoric gas with a repulsively sweet odor. Synonyms include boroethane, boron hydride, and diboron hexahydride. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Its derivatives are useful reagents.

Boron trifluoride is the inorganic compound with the formula BF3. This pungent colourless toxic gas forms white fumes in moist air. It is a useful Lewis acid and a versatile building block for other boron compounds.

The phosphonium cation describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

Trimethylaluminium Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

Phosphorus trichloride Chemical compound

Phosphorus trichloride is a inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts violently with water to release hydrogen chloride.

Hafnium tetrachloride Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive toward water.

Vanadium oxytrichloride Chemical compound

Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This yellow distillable liquid hydrolyzes readily in air. It is an oxidizing agent. It is used as a reagent in organic synthesis. Samples often appear red or orange owing to an impurity of vanadium tetrachloride.

Titanocene dichloride Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Tungsten hexachloride Chemical compound

Tungsten hexachloride is the chemical compound of tungsten and chlorine with the formula WCl6. This dark violet blue species exists as a volatile solid under standard conditions. It is an important starting reagent in the preparation of tungsten compounds. Other examples of charge-neutral hexachlorides are ReCl6 and MoCl6. The highly volatile WF6 is also known.

Hexachlorophosphazene Chemical compound

Hexachlorophosphazene is an inorganic compound with the formula (NPCl2)3. The molecule has a cyclic, unsaturated backbone consisting of alternating phosphorus and nitrogen centers, and can be viewed as a trimer of the hypothetical compound N≡PCl2. Its classification as a phosphazene highlights its relationship to benzene. There is large academic interest in the compound relating to the phosphorus-nitrogen bonding and phosphorus reactivity.

Thiophosphoryl chloride Chemical compound

Thiophosphoryl chloride is an inorganic compound with the formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

Diboron tetrafluoride is the inorganic compound with the formula (BF2)2. A colorless gas, the compound has a halflife of days at room temperature. It is the most stable of the diboron tetrahalides.

In chemistry, redistribution usually refers to the exchange of anionic ligands bonded to metal and metalloid centers. The conversion does not involve redox, in contrast to disproportionation reactions. Some useful redistribution reactions are conducted at higher temperatures; upon cooling the mixture, the product mixture is kinetically frozen and the individual products can be separated. In cases where redistribution is rapid at mild temperatures, the reaction is less useful synthetically but still important mechanistically.

Molybdenum(III) chloride Chemical compound

Molybdenum(III) chloride is the inorganic compound with the formula MoCl3. It forms purple crystals.

Chlorobis(ethylene)rhodium dimer Chemical compound

Chlorobis(ethylene)rhodium dimer is an organorhodium compound with the formula Rh2Cl2(C2H4)4. It is a red-orange solid that is soluble in nonpolar organic solvents. The molecule consists of two bridging chloride ligands and four ethylene ligands. The ethylene ligands are labile and readily displaced even by other alkenes. A variety of homogeneous catalysts have been prepared from this complex.

Organotantalum chemistry Chemistry of compounds containing a carbon-to-tantalum bond

Organotantalum chemistry is the chemistry of chemical compounds containing a carbon-to-tantalum chemical bond. A wide variety of compound have been reported, initially with cyclopentadienyl and CO ligands. Oxidation states vary from Ta(V) to Ta(-I).

Tetrahydroxydiboron Chemical compound

Tetrahydroxydiboron is a chemical reagent which can be used to prepare boronic acids.

Decamethyltitanocene dichloride Chemical compound

Decamethyltitanocene dichloride is an organotitanium compound with the formula Cp*2TiCl2 (where Cp* is C5(CH3)5, derived from pentamethylcyclopentadiene). It is a red solid that is soluble in nonpolar organic solvents. The complex has been the subject of extensive research. It is a precursor to many other organotitanium complexes

Niobium(III) chloride also known as niobium trichloride is a compound of niobium and chlorine. The binary phase NbCl3 is not well characterized but many adducts are known.

References

  1. 1 2 P. L. Timms (1972). Low Temperature Condensation. Advances in Inorganic Chemistry and Radiochemistry. p. 143. ISBN   0-12-023614-1.
  2. Timms, Peter L. (1979). "Tetrachlorodiborane(4) (Diboron Tetrachloride)". Inorganic Syntheses. Inorganic Syntheses. 19. pp. 74–78. doi:10.1002/9780470132500.ch14. ISBN   9780470132500.
  3. 1 2 Urry, Grant; Wartik, Thomas; Moore, R. E.; Schlesinger, H. I. (1954). "The Preparation and Some of the Properties of Diboron Tetrachloride, B2Cl4". Journal of the American Chemical Society. 76 (21): 5293–5298. doi:10.1021/ja01650a010. ISSN   0002-7863.
  4. Urry, Grant; Kerrigan, James; Parsons, Theran D.; Schlesinger, H. I. (1954). "Diboron Tetrachloride, B2Cl4, as a Reagent for the Synthesis of Organo-boron Compounds. I. The Reaction of Diboron Tetrachloride with Ethylene". Journal of the American Chemical Society. 76 (21): 5299–5301. doi:10.1021/ja01650a011. ISSN   0002-7863.