Names | |
---|---|
IUPAC names Tantalum(V) chloride Tantalum pentachloride | |
Identifiers | |
| |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.028.869 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
TaCl5 | |
Molar mass | 358.213 g/mol |
Appearance | white monoclinic crystals [1] |
Density | 3.68 g/cm3 |
Melting point | 216 °C (421 °F; 489 K) |
Boiling point | 239.4 °C (462.9 °F; 512.5 K) (decomposes) |
reacts | |
Solubility | chloroform, CCl4 |
+140.0×10−6 cm3/mol | |
Structure | |
Monoclinic, mS72 | |
C2/m, No. 12 | |
Thermochemistry | |
Std molar entropy (S⦵298) | 221.75 J K−1 mol−1 |
Std enthalpy of formation (ΔfH⦵298) | -858.98 kJ/mol |
Hazards | |
GHS labelling: | |
Danger | |
H302, H314 | |
P280, P305+P351+P338, P310 | |
NFPA 704 (fire diamond) | |
Flash point | Non-flammable |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 1900 mg/kg (oral, rat) |
Safety data sheet (SDS) | External SDS |
Related compounds | |
Other anions | Tantalum(V) fluoride Tantalum(V) bromide Tantalum(V) iodide |
Other cations | Vanadium(IV) chloride Niobium(V) chloride |
Related compounds | Tantalum(III) chloride, Tantalum(IV) chloride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.
TaCl5 crystallizes in the monoclinic space group C2/m. [2] The ten chlorine atoms define a pair of octahedra that share a common edge. The tantalum atoms occupy the centres of the octahedra and are joined by two chlorine bridging ligands. The dimeric structure is retained in non-complexing solvents and to a large extent in the molten state. In the vapour state, however, TaCl5 is monomeric. This monomer adopts a trigonal bipyramidal structure, like that of PCl5. [3]
The solubility of tantalum pentachloride increases slightly for the following series of aromatic hydrocarbons:
This is reflected in the deepening of colour of the solutions from pale yellow to orange. Tantalum pentachloride is less soluble in cyclohexane and carbon tetrachloride than in the aromatic hydrocarbons. Such solutions of tantalum pentachloride are also known to be poor conductors of electricity, indicating little ionization. TaCl5 is purified by sublimation to give white needles.
Tantalum pentachloride can be prepared by reacting powdered metallic tantalum with chlorine gas at between 170 and 250 °C. This reaction can also be performed using HCl at 400 °C. [4]
It can also be prepared by a reaction between tantalum pentoxide and thionyl chloride at 240 °C
Tantalum pentachloride is commercially available, however samples can be contaminated with tantalum(V) oxychloride (TaOCl3), formed by hydrolysis.
TaCl5 is electrophilic and it behaves like a Friedel–Crafts catalyst, similar to AlCl3. It forms adducts with a variety of Lewis bases. [5]
TaCl5 forms stable complexes with ethers:
TaCl5 also reacts with phosphorus pentachloride and phosphorus oxychloride, the former as a chloride donor and the latter serves as a ligand, binding through the oxygen:
Tantalum pentachloride reacts with tertiary amines to give crystalline adducts.
Tantalum pentachloride reacts at room temperature with an excess of triphenylphosphine oxide to give oxychlorides:
The presumed initial formation of adducts between TaCl5 and hydroxyl compounds such as alcohols, phenols and carboxylic acids is followed immediately by the elimination of hydrogen chloride and the formation of Ta–O bonds:
In the presence of ammonia as a HCl acceptor, all five chloride ligands are displaced with formation of Ta(OEt)5. Similarly TaCl5 reacts with lithium methoxide in anhydrous methanol to form related methoxy derivatives:
Ammonia will displace most of the chloride ligands from TaCl5 to give a cluster. Chloride is displaced more slowly by primary or secondary amines but the replacement of all five chloride centers by amido groups has been achieved by the use of lithium dialkylamides, as illustrated by the synthesis of pentakis(dimethylamido)tantalum:
With alcohols, the pentachloride reacts to give alkoxides. As shown for the preparation of tantalum(V) ethoxide, such reactions are often conducted in the presence of base:
Tantalum pentachloride is reduced by nitrogen heterocycles such as pyridine.
Reduction of tantalum(V) chloride gives anionic and neutral clusters including [Ta6Cl18]4− and [Ta6Cl14](H2O)4. [6]
Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.
Praseodymium(III) chloride is the inorganic compound with the formula PrCl3. Like other lanthanide trichlorides, it exists both in the anhydrous and hydrated forms. It is a blue-green solid that rapidly absorbs water on exposure to moist air to form a light green heptahydrate.
Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.
Niobium(V) chloride, also known as niobium pentachloride, is a yellow crystalline solid. It hydrolyzes in air, and samples are often contaminated with small amounts of NbOCl3. It is often used as a precursor to other compounds of niobium. NbCl5 may be purified by sublimation.
Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive substance and must be stored in glass or PTFE containers.
Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.
Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.
Rhenium pentachloride is an inorganic compound of chlorine and rhenium. The compound has the formula Re2Cl10 but it is usually referred to as rhenium pentachloride. It is a red-brown solid.
Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.
Niobium pentoxide is the inorganic compound with the formula Nb2O5. A colorless, insoluble, and fairly unreactive solid, it is the most widespread precursor for other compounds and materials containing niobium. It is predominantly used in alloying, with other specialized applications in capacitors, optical glasses, and the production of lithium niobate.
Niobium(IV) chloride, also known as niobium tetrachloride, is the chemical compound of formula NbCl4. This compound exists as dark violet crystals, is highly sensitive to air and moisture, and disproportiates into niobium(III) chloride and niobium(V) chloride when heated.
Niobium oxychloride is the inorganic compound with the formula NbOCl3. It is a white, crystalline, diamagnetic solid. It is often found as an impurity in samples of niobium pentachloride, a common reagent in niobium chemistry.
Niobium(V) ethoxide is an metalorganic compound with formula Nb2(OC2H5)10. It is a colorless liquid that dissolves in some organic solvents but hydrolyzes readily. It is mainly used for the sol-gel processing of materials containing niobium oxides.
Tantalum(V) ethoxide is a metalorganic compound with formula Ta2(OC2H5)10, often abbreviated as Ta2(OEt)10. It is a colorless solid that dissolves in some organic solvents but hydrolyzes readily. It is used to prepare films of tantalum(V) oxide.
Organotantalum chemistry is the chemistry of chemical compounds containing a carbon-to-tantalum chemical bond. A wide variety of compound have been reported, initially with cyclopentadienyl and CO ligands. Oxidation states vary from Ta(V) to Ta(-I).
Niobium(III) chloride also known as niobium trichloride is a compound of niobium and chlorine. The binary phase NbCl3 is not well characterized but many adducts are known.
Tantalum(III) chloride or tantalum trichloride is non-stoichiometric chemical compound with a range of composition from TaCl2.9 to TaCl3.1 Anionic and neutral clusters containing Ta(III) chloride include [Ta6Cl18]4− and [Ta6Cl14](H2O)4.
Manganese(III) chloride is the hypothetical inorganic compound with the formula MnCl3.