Pentamethyltantalum

Last updated
Pentamethyltantalum
DOSBIWoneRotamer.png
Names
Systematic IUPAC name
pentamethyl-λ5-tantalane
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/5CH3.Ta/h5*1H3;/q5*-1;+5 X mark.svgN
    Key: GFPNFSSWCUULLCP-UHFFFAOYSA-N X mark.svgN
  • C[Ta](C)(C)(C)C
Properties
C5H15Ta
Molar mass 256.123 g·mol−1
Appearanceyellow oil, green solid at −20°
Melting point 0 °C (32 °F; 273 K) [1]
Boiling point decomposes above 25° to methane
Solubility ether, pentane, 2-methylbutane
Thermochemistry
169.8 [2] 213 kJ/mol [3]
Related compounds
Related compounds
Pentamethylarsenic
Pentamethylbismuth
Pentamethylantimony
pentabenzyltantalum
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN (what is  Yes check.svgYX mark.svgN ?)

Pentamethyltantalum is a homoleptic organotantalum compound. It has a propensity to explode when it is melted. [4] Its discovery was part of a sequence that lead to Richard R. Schrock's Nobel Prize discovery in olefin metathesis. [5]

Contents

Production

Pentamethyltantalum can be made from the reaction of methyllithium with Ta(CH3)3Cl2. [6] Ta(CH3)3Cl2 is in turn made from tantalum pentachloride and dimethylzinc. [7]

The preparation was inspired by the existence of pentaalkyl compounds of phosphorus and arsenic, and the discovery of hexamethyltungsten. The discoverer, Richard R. Schrock considered tantalum to be a metallic phosphorus, and tried the use of methyllithium. [8]

Properties

The pentamethyltantalum adopts a square pyramid shape. Ignoring the C-H bonds, the molecule has C4v symmetry. The four carbon atoms at the base of the pyramid are called basal, and the carbon atom at the top is called apical or apex. The distance from tantalum to the apical carbon atom is 2.11 Å, and to the basal carbon atoms is 2.180 Å. The distance from hydrogen to carbon in the methyl groups is 1.106 Å. The angle subtended by two basal carbon bonds is 82.2°, and the angle between the bonds to the apex and a carbon on the base is about 111.7°. [9] [10]

At room temperature pentamethyltantalum can spontaneously explode, so samples are stored below 0°. [10]

Reactions

With many carbon-hydrogen bonds near Ta, analogues of pentamethyltantalum are susceptible to alpha elimination. [5]

Excess methyllithium reacts to yield higher coordinated methyl tantalum ions [Ta(CH3)6] and [Ta(CH3)7]2−. [6]

Pentamethyltantalum in solution forms stable insoluble complex material when mixed with dmpe (CH3)2PCH2CH2P(CH3)2. [6]

With nitric oxide it gives a white coloured dimer with formula {TaMe3[ON(Me)NO]2}2 (Me=CH3). [11]

Related Research Articles

Tantalum Chemical element, symbol Ta and atomic number 73

Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as tantalium, it is named after Tantalus, a villain from Greek mythology. Tantalum is a rare, hard, blue-gray, lustrous transition metal that is highly corrosion-resistant. It is part of the refractory metals group, which are widely used as minor components in alloys.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

Group 5 element Group of chemical elements

Group 5 is a group of elements in the periodic table. Group 5 contains vanadium (V), niobium (Nb), tantalum (Ta) and dubnium (Db). This group lies in the d-block of the periodic table. The group itself has not acquired a trivial name; it belongs to the broader grouping of the transition metals.

Atom cluster

In chemistry, an atom cluster is an ensemble of bound atoms or molecules that is intermediate in size between a simple molecule and a nanoparticle; that is, up to a few nanometers (nm) in diameter. The term microcluster may be used for ensembles with up to couple dozen atoms.

Olefin metathesis

Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

Perrhenic acid Chemical compound

Perrhenic acid is the chemical compound with the formula Re
2
O
7
(OH
2
)
2
. It is obtained by evaporating aqueous solutions of Re
2
O
7
. Conventionally, perrhenic acid is considered to have the formula HReO
4
, and a species of this formula forms when rhenium(VII) oxide sublimes in the presence of water or steam. When a solution of Re
2
O
7
is kept for a period of months, it breaks down and crystals of HReO
4
·H
2
O
are formed, which contain tetrahedral ReO
4
For most purposes, perrhenic acid and rhenium(VII) oxide are used interchangeably. Rhenium can be dissolved in nitric or concentrated sulfuric acid to produce perrhenic acid.

Tantalum(V) chloride Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

Yves Chauvin

Yves Chauvin was a French chemist and Nobel Prize laureate. He was honorary research director at the Institut français du pétrole and a member of the French Academy of Science. He was known for his work for deciphering the process of olefin metathesis for which he was awarded the 2005 Nobel Prize in Chemistry along with Robert H. Grubbs and Richard R. Schrock.

Tantalum(V) bromide Chemical compound

Tantalum(V) bromide is the inorganic compound with the formula Taa2Br10. Its name comes from the compound's empirical formula, TaBr5. It is a diamagnetic, orange solid that hydrolyses readily. The compound adopts an edge-shared bioctahedral structure, which means that two TaBr5 units are joined by a pair of bromide bridges. There is no bond between the Ta centres. Niobium(V) chloride, niobium(V) bromide, niobium(V) iodide, tantalum(V) chloride, and tantalum(V) iodide all share this structural motif.

Group 2 organometallic chemistry

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organmetallic group 2 compounds are rare and are typically limited to academic interests.

Organomolybdenum chemistry

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

Dichlorotris(triphenylphosphine)ruthenium(II) Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

Tantalum(V) ethoxide Chemical compound

Tantalum(V) ethoxide is a metalorganic compound with formula Ta2(OC2H5)10, often abbreviated as Ta2(OEt)10. It is a colorless solid that dissolves in some organic solvents but hydrolyzes readily. It is used to prepare films of tantalum(V) oxide.

Organotantalum chemistry Chemistry of compounds containing a carbon-to-tantalum bond

Organotantalum chemistry is the chemistry of chemical compounds containing a carbon-to-tantalum chemical bond. A wide variety of compound have been reported, initially with cyclopentadienyl and CO ligands. Oxidation states vary from Ta(V) to Ta(-I).

Christopher "Kit" Colin Cummins is an American chemist currently the Henry Dreyfus Professor at Massachusetts Institute of Technology. He has made contributions to the coordination chemistry of transition metal nitrides, phosphides, and carbides.

Organoniobium chemistry is the chemistry of compounds containing niobium-carbon (Nb-C) bonds. Compared to the other group 5 transition metal organometallics, the chemistry of organoniobium compounds most closely resembles that of organotantalum compounds. Organoniobium compounds of oxidation states +5, +4, +3, +2, +1, 0, -1, and -3 have been prepared, with the +5 oxidation state being the most common.

Nontrigonal pnictogen compounds

Nontrigonal pnictogen compounds refer to tricoordinate trivalent pnictogen compounds that are not of typical trigonal pyramidal molecular geometry. By virtue of their geometric constraint, these compounds exhibit distinct electronic structures and reactivities, which bestow on them potential to provide unique nonmetal platforms for bond cleavage reactions.

Aluminium(I) nucleophiles are a group of inorganic and organometallic nucleophilic compounds containing at least one aluminium metal center in the +1 oxidation state with a lone pair of electrons strongly localized on the aluminium(I) center.

References

  1. Yaws, Carl L. (2015). The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals: Physical Properties for More Than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics. Gulf Professional Publishing. p. 87. ISBN   9780128011461.
  2. Adedeji, Festus A.; Connor, Joseph A.; Skinner, Henry A.; Galyer, Lee; Wilkinson, Geoffrey (1976). "Heat of formation of pentamethylantalum and hexamethyltungsten". Journal of the Chemical Society, Chemical Communications (5): 159. doi:10.1039/C39760000159.
  3. "Pentamethyl tantalum". webbook.nist.gov.
  4. Urben, Peter (2013). Bretherick's Handbook of Reactive Chemical Hazards. Academic Press. p. 744. ISBN   9780080523408.
  5. 1 2 Schrock, Richard R. (8 December 2005). "Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions Nobel Lecture" (PDF). Angewandte Chemie International Edition in English. 45 (23): 3748–59. doi:10.1002/anie.200600085. PMID   16703641 . Retrieved 18 June 2017.
  6. 1 2 3 Schrock, R. R.; Meakin, P. (August 1974). "Pentamethyl complexes of niobium and tantalum". Journal of the American Chemical Society. 96 (16): 5288–5290. doi:10.1021/ja00823a064.
  7. Herrmann, W. A. (2014). Synthetic Methods of Organometallic and Inorganic Chemistry, Volume 7, 1997: Volume 7: Transition Metals (in German). Georg Thieme Verlag. pp. 160–161. ISBN   9783131794710.
  8. Schrock, Richard R. (2002). "The Discovery and Development of High Oxidation State Alkilidene Complexes". In Bertrand, Guy (ed.). Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents. CRC Press. pp. 206–208. ISBN   9780203910924.
  9. Albright, Thomas A.; Tang, Huang (November 1992). "The Structure of Pentamethyltantalum". Angewandte Chemie International Edition in English. 31 (11): 1462–1464. doi:10.1002/anie.199214621.
  10. 1 2 Haaland, Arne; Hammel, Andreas; Rypdal, Kristin; Verne, Hans Peter; Volden, Hans Vidar; Pulham, Colin (November 1992). "The Structures of Pentamethyltantalum and -Antimony: One Square Pyramid and One Trigonal Bipyramid". Angewandte Chemie International Edition in English. 31 (11): 1464–1467. doi:10.1002/anie.199214641.
  11. Middleton, A. Robert; Wilkinson, Geoffrey (1980). "Interaction of nitric oxide with paramagnetic and diamagnetic alkyls of titanium, zirconium, vanadium, niobium, and tantalum". Journal of the Chemical Society, Dalton Transactions (10): 1888. doi:10.1039/DT9800001888.