Zinc pyrophosphate

Last updated
Zinc pyrophosphate [1]
Zinc pyrophosphate.svg
Names
Other names
Dizinc diphosphate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.367 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/H4O7P2.2Zn/c1-8(2,3)7-9(4,5)6;;/h(H2,1,2,3)(H2,4,5,6);;/q;2*+2/p-4 Yes check.svgY
    Key: OMSYGYSPFZQFFP-UHFFFAOYSA-J Yes check.svgY
  • InChI=1/H4O7P2.2Zn/c1-8(2,3)7-9(4,5)6;;/h(H2,1,2,3)(H2,4,5,6);;/q;2*+2/p-4
    Key: OMSYGYSPFZQFFP-XBHQNQODAA
  • [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O
Properties
Zn2P2O7
Molar mass 304.72 g/mol
AppearanceWhite crystalline powder
Density 3.75 g/cm3
Insoluble
Solubility Soluble in dilute acids
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Zinc pyrophosphate (Zn2P2O7) is an ionic inorganic chemical compound composed of Zn2+ cations and pyrophosphate anions.

Contents

Preparation

Zinc pyrophosphate can be obtained from the thermal decomposition of zinc ammonium phosphate. [2]

2 ZnNH4PO4 → Zn2P2O7 + 2 NH3 + H2O

It can also be obtained from the reaction between sodium carbonate, zinc oxide, and ammonium dihydrogen phosphate. [3]

Na2CO3 + 2 ZnO + 2 (NH4)H2PO4 → Zn2P2O7 + 2 NaOH + 2 NH3 + 2 H2O + CO2

It is also produced when a strongly acidic solution of zinc sulfate is heated with sodium pyrophosphate. [4]

2 ZnSO4 + Na4P2O7 → Zn2P2O7 + 2 Na2SO4

Another method is precipitating zinc as a phosphate, then heating over 1123 K.[ citation needed ]

Properties

Zinc pyrophosphate is a white crystalline solid that is insoluble in water. [5] On heating in water, it decomposes to form Zn3(PO4)2 and ZnHPO4. It crystallizes in the monoclinic system. The α-form crystallizes at low temperatures and the β-form crystallizes at high temperatures. [2] [3]

Uses

Zinc pyrophosphate is used as a pigment. [5] It is useful in gravimetric analysis of zinc. [6]

Related Research Articles

<span class="mw-page-title-main">Hydroxylamine</span> Inorganic compound

Hydroxylamine is an inorganic compound with the chemical formula NH2OH. The compound is in a form of a white hygroscopic crystals. Hydroxylamine is almost always provided and used as an aqueous solution. It is consumed almost exclusively to produce Nylon-6. The oxidation of NH3 to hydroxylamine is a step in biological nitrification.

<span class="mw-page-title-main">Barium hydroxide</span> Chemical compound

Barium hydroxide is a chemical compound with the chemical formula Ba(OH)2. The monohydrate (x = 1), known as baryta or baryta-water, is one of the principal compounds of barium. This white granular monohydrate is the usual commercial form.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. All forms of zinc chloride are deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. In a major monograph, zinc chlorides have been described as "one of the important compounds of zinc."

Acid salts are a class of salts that produce an acidic solution after being dissolved in a solvent. Its formation as a substance has a greater electrical conductivity than that of the pure solvent. An acidic solution formed by acid salt is made during partial neutralization of diprotic or polyprotic acids. A half-neutralization occurs due to the remaining of replaceable hydrogen atoms from the partial dissociation of weak acids that have not been reacted with hydroxide ions to create water molecules.

<span class="mw-page-title-main">Iridium(III) chloride</span> Chemical compound

Iridium(III) chloride is the inorganic compound with the formula IrCl3. The anhydrous compound is relatively rare, but the related hydrate is much more commonly encountered. The anhydrous salt has two polymorphs, α and β, which are brown and red colored respectively. More commonly encountered is the hygroscopic dark green trihydrate IrCl3(H2O)3 which is a common starting point for iridium chemistry.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Beryllium fluoride</span> Chemical compound

Beryllium fluoride is the inorganic compound with the formula BeF2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water.

<span class="mw-page-title-main">Terbium(III,IV) oxide</span> Chemical compound

Terbium(III,IV) oxide, occasionally called tetraterbium heptaoxide, has the formula Tb4O7, though some texts refer to it as TbO1.75. There is some debate as to whether it is a discrete compound, or simply one phase in an interstitial oxide system. Tb4O7 is one of the main commercial terbium compounds, and the only such product containing at least some Tb(IV) (terbium in the +4 oxidation state), along with the more stable Tb(III). It is produced by heating the metal oxalate, and it is used in the preparation of other terbium compounds. Terbium forms three other major oxides: Tb2O3, TbO2, and Tb6O11.

<span class="mw-page-title-main">Beryllium hydroxide</span> Chemical compound

Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydroxide is rare (in form of the mineral behoite, orthorhombic) or very rare (clinobehoite, monoclinic). When alkali is added to beryllium salt solutions the α-form (a gel) is formed. If this left to stand or boiled, the rhombic β-form precipitates. This has the same structure as zinc hydroxide, Zn(OH)2, with tetrahedral beryllium centers.

<span class="mw-page-title-main">Zinc fluoride</span> Chemical compound

Zinc fluoride is an inorganic chemical compound with the chemical formula ZnF2. It is encountered as the anhydrous form and also as the tetrahydrate, ZnF2·4H2O (rhombohedral crystal structure). It has a high melting point and has the rutile structure containing 6 coordinate zinc, which suggests appreciable ionic character in its chemical bonding. Unlike the other zinc halides, ZnCl2, ZnBr2 and ZnI2, it is not very soluble in water.

<span class="mw-page-title-main">Zinc nitride</span> Chemical compound

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

<span class="mw-page-title-main">Vanadium(III) fluoride</span> Chemical compound

Vanadium(III) fluoride is the chemical compound with the formula VF3. This yellow-green, refractory solid is obtained in a two-step procedure from V2O3. Similar to other transition-metal fluorides (such as MnF2), it exhibits magnetic ordering at low temperatures (e.g. V2F6.4H2O orders below 12 K).

<span class="mw-page-title-main">Disodium pyrophosphate</span> Chemical compound

Disodium pyrophosphate or sodium acid pyrophosphate (SAPP) is an inorganic compound with the chemical formula Na2H2P2O7. It consists of sodium cations (Na+) and dihydrogen pyrophosphate anions (H2P2O2−7). It is a white, water-soluble solid that serves as a buffering and chelating agent, with many applications in the food industry. When crystallized from water, it forms a hexahydrate, but it dehydrates above room temperature. Pyrophosphate is a polyvalent anion with a high affinity for polyvalent cations, e.g. Ca2+.

<span class="mw-page-title-main">Holmium(III) chloride</span> Chemical compound

Holmium(III) chloride is the inorganic compound with the formula HoCl3. It is a common salt but is mainly used in research. It can be used to produce pure holmium. It exhibits the same color-changing behavior seen in holmium oxide, being a yellow in natural lighting and a bright pink color in fluorescent lighting.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

<span class="mw-page-title-main">Sodium ferrioxalate</span> Chemical compound

Sodium ferrioxalate are inorganic compounds with the formula Na3Fe(C2O4)3(H2O)n. The pentahydrate has been characterized by X-ray crystallography. In contrast the potassium, ammonium, and rubidium salts crystallize from water as their trihydrates.

<span class="mw-page-title-main">Silver phosphate</span> Chemical compound

Silver phosphate or silver orthophosphate is a light sensitive, yellow, water-insoluble chemical compound composed of silver and phosphate ions of formula Ag3PO4.

<span class="mw-page-title-main">Ammonium carbamate</span> Chemical compound

Ammonium carbamate is a chemical compound with the formula [NH4][H2NCO2] consisting of ammonium cation NH+4 and carbamate anion NH2COO. It is a white solid that is extremely soluble in water, less so in alcohol. Ammonium carbamate can be formed by the reaction of ammonia NH3 with carbon dioxide CO2, and will slowly decompose to those gases at ordinary temperatures and pressures. It is an intermediate in the industrial synthesis of urea (NH2)2CO, an important fertilizer.

<span class="mw-page-title-main">Tetraiodine nonoxide</span> Chemical compound

Tetraiodine nonoxide is an iodine oxide with the chemical formula I4O9.

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +4, and +3 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. The tetrathioperrhenate anion [ReS4] is possible.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–96, ISBN   0-8493-0594-2
  2. 1 2 Calvo, Crispin (1965-05-01). "THE CRYSTAL STRUCTURE AND PHASE TRANSITIONS OF β-Zn 2 P 2 O 7". Canadian Journal of Chemistry. 43 (5): 1147–1153. doi: 10.1139/v65-152 . ISSN   0008-4042.
  3. 1 2 Jarboui, A.; Ben Rhaeim, A.; Hlel, F.; Guidara, K; Gargouri, M. (2010). "NMR study and electrical properties investigation of Zn2P2O7". Ionics. 16 (1): 67–73. doi:10.1007/s11581-009-0333-5. ISSN   0947-7047. S2CID   94790682.
  4. Ochs, Rudolf (2013). Praktikum der Qualitativen Analyse Für Chemiker · Pharmazeuten und Mediziner. Berlin, Heidelberg: Springer-Verlag. p. 117. ISBN   978-3-662-28315-8. OCLC   860357745.
  5. 1 2 Perry, Dale L. (2016). Handbook of Inorganic Compounds (2nd ed.). Boca Raton, FL: CRC Press. p. 469. ISBN   978-1-4398-1462-8. OCLC   759865801.
  6. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). Lehrbuch der anorganischen Chemie (102nd ed.). Berlin: de Gruyter. p. 1493. ISBN   978-3-11-012641-9. OCLC   237142268.