Aluminium powder

Last updated
Aluminium pigment powder Aluminium pigment powder.JPG
Aluminium pigment powder

Aluminium powder is powdered aluminium.

This was originally produced by mechanical means using a stamp mill to create flakes. Subsequently, a process of spraying molten aluminium to create a powder of droplets was developed by E. J. Hall in the 1920s. The resulting powder might then be processed further in a ball mill to flatten it into flakes for use as a coating or pigment. [1] Aluminum powder features low density with high conductivity. [2]

Contents

Characteristics

The melting point of aluminium powder is 660 °C. [3]

Usage

Depending on the usage, the powder is either coated or uncoated.

Safety

Aluminium is insoluble. If the powder or dust is breathed in then little of it will be absorbed but it may interfere with the clearance mechanism of the lung. High levels of exposure over many years may result in aluminosis which causes pulmonary fibrosis. [7]

Aluminium powder and dust is highly flammable and creates a significant risk of fire or explosion. There have been many incidents in industries which produce such dusts and powders. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder. The inception of gunpowder rockets in warfare can be credited to the ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Thermite</span> Pyrotechnic composition of metal powder, which serves as fuel, and metal oxide

Thermite is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic reduction-oxidation (redox) reaction. Most varieties are not explosive, but can create brief bursts of heat and high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as black powder.

<span class="mw-page-title-main">Ammonium perchlorate</span> Chemical compound

Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propellant called ammonium perchlorate composite propellant. Its instability has involved it in a number of accidents, such as the PEPCON disaster.

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is used to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Inconel</span> Austenitic nickel-chromium superalloys

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

Nano-thermite or super-thermite is a metastable intermolecular composite (MIC) characterized by a particle size of its main constituents, a metal fuel and oxidizer, under 100 nanometers. This allows for high and customizable reaction rates. Nano-thermites contain an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and pyrotechnics.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

Aluminium–lithium alloys are a set of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% lithium by mass.

Ammonium perchlorate composite propellant (APCP) is a solid rocket propellant. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but also by being cast into shape, as opposed to powder pressing as with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry.

<span class="mw-page-title-main">Dust explosion</span> Rapid combustion of fine particles suspended in the air

A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.

<span class="mw-page-title-main">Exothermic welding</span> Using pyrotechnic metal to join two metal pieces together

Exothermic welding, also known as exothermic bonding, thermite welding (TW), and thermit welding, is a welding process that employs molten metal to permanently join the conductors. The process employs an exothermic reaction of a thermite composition to heat the metal, and requires no external source of heat or current. The chemical reaction that produces the heat is an aluminothermic reaction between aluminium powder and a metal oxide.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used in a rocket engine

Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

An alumina effect pigment is a pearlescent pigment based on alumina. It is used for decorative purposes on paints and plastics, giving them a matte, metal-like appearance.

Industrial porcelain enamel is the use of porcelain enamel for industrial, rather than artistic, applications. Porcelain enamel, a thin layer of ceramic or glass applied to a substrate of metal, is used to protect surfaces from chemical attack and physical damage, modify the structural characteristics of the substrate, and improve the appearance of the product.

<span class="mw-page-title-main">Detonation spraying</span> Method of thermal spraying

Detonation spraying is one of the many forms of thermal spraying techniques that are used to apply a protective coating at supersonic velocities to a material in order to change its surface characteristics. This is primarily to improve the durability of a component. It was first invented in 1955 by H.B. Sargent, R.M. Poorman and H. Lamprey and is applied to a component using a specifically designed detonation gun (D-gun). The component being sprayed must be prepared correctly by removing all surface oils, greases, debris and roughing up the surface in order to achieve a strongly bonded detonation spray coating. This process involves the highest velocities and temperatures (≈4000 °C) of coating materials compared to all other forms of thermal spraying techniques. Because of these characteristics, detonation spraying is able to apply low porous and low oxygen content protective coatings that protect against corrosion, abrasion and adhesion under low load.

<span class="mw-page-title-main">Aluminium-based nanogalvanic alloys</span>

Aluminium-based nanogalvanic alloys refer to a class of nanostructured metal powders that spontaneously and rapidly produce hydrogen gas upon contact with water or any liquid containing water as a result of their galvanic metal microstructure. It serves as a method of hydrogen production that can take place at a rapid pace at room temperature without the assistance of chemicals, catalysts, or externally supplied power.

References

  1. Joseph R. Davies (1993), "Powder Metallurgy Processing", Aluminum and Aluminum Alloys, ASM International, p. 275, ISBN   9780871704962
  2. Gromov, A.A.; Nalivaiko, A.Yu (2019). "Chapter 5 - Aluminum Powders for Energetics: Properties and Oxidation Behavior". In Yan, Qi-Long (ed.). Nanomaterials in Rocket Propulsion Systems. Elsevier. pp. 151–173. ISBN   9780128139080.
  3. Friedman, Raymond (1998). Principles of Fire Protection Chemistry and Physics. Jones & Bartlett Learning. ISBN   9780877654407.
  4. Champod, Christophe; Lennard, Chris J.; Margot, Pierre; Stoilovic, Milutin (2004-04-27). Fingerprints and Other Ridge Skin Impressions. CRC Press. ISBN   9780203485040.
  5. Space Shuttle Basics –Solid Rocket Boosters, NASA, archived from the original on 2000-10-02
  6. "Silver-coated Aluminum Powder". Stanford Powders. Retrieved Aug 29, 2024.
  7. "Aluminium, Dusts containing aluminium as metal, aluminium oxide and aluminium hydroxide", MAK Value Documentation, 2007, doi: 10.1002/3527600418.mb742990vere4313
  8. Urben, Peter (2013-10-22), Bretherick's Handbook of Reactive Chemical Hazards, Elsevier, p. 22, ISBN   978-0-08-052340-8