Dicalcium phosphate

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Dicalcium phosphate
Ca(HPO4)(H2O)2 from JCS A Curry, N.A.; Jones, D.W. (1971.jpg
Dicalcium phosphate.svg
Names
IUPAC name
calcium hydrogen phosphate
Other names
calcium hydrogen phosphate,
phosphoric acid calcium salt (1:1)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.933 OOjs UI icon edit-ltr-progressive.svg
E number E341(ii) (antioxidants, ...)
PubChem CID
UNII
  • InChI=1S/Ca.H3O4P.2H2O/c;1-5(2,3)4;;/h;(H3,1,2,3,4);2*1H2/q+2;;;/p-2 X mark.svgN
    Key: XAAHAAMILDNBPS-UHFFFAOYSA-L X mark.svgN
  • InChI=1/Ca.H3O4P.2H2O/c;1-5(2,3)4;;/h;(H3,1,2,3,4);2*1H2/q+2;;;/p-2
    Key: XAAHAAMILDNBPS-NUQVWONBAM
  • O.O.OP(=O)([O-])[O-].[Ca+2]
Properties
CaHPO4
Molar mass 136.06 g/mol (anhydrous)
172.09 (dihydrate)
Appearancewhite powder
Odor odorless
Density 2.929 g/cm3 (anhydrous)
2.31 g/cm3 (dihydrate)
Melting point decomposes
0.02 g/100 mL (anhydrous)
0.02 g/100 mL (dihydrate)
Structure
triclinic
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Flash point Non-flammable
Related compounds
Other anions
Calcium pyrophosphate
Other cations
Magnesium phosphate
Monocalcium phosphate
Tricalcium phosphate
Strontium phosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dicalcium phosphate is the calcium phosphate with the formula CaHPO4 and its dihydrate. The "di" prefix in the common name arises because the formation of the HPO42– anion involves the removal of two protons from phosphoric acid, H3PO4. It is also known as dibasic calcium phosphate or calcium monohydrogen phosphate. Dicalcium phosphate is used as a food additive, and it is found in some toothpastes as a polishing agent and biomaterial. [1] [2]

Contents

Preparation

Dibasic calcium phosphate is produced by neutralizing calcium hydroxide with phosphoric acid, precipitating the dihydrate as a solid. At 60 °C the anhydrous form is precipitated: [3]

H3PO4 + Ca(OH)2 → CaHPO4 +2H2O

To prevent degradation that would form hydroxyapatite, sodium pyrophosphate or trimagnesium phosphate octahydrate are added when, for example, dibasic calcium phosphate dihydrate is to be used as a polishing agent in toothpaste. [1]

In a continuous process CaCl2 can be treated with (NH4)2HPO4 to form the dihydrate:

CaCl2 + (NH4)2HPO4 → CaHPO4•2H2O + 2NH4Cl

A slurry of the dihydrate is then heated to around 65–70 °C to form anhydrous CaHPO4 as a crystalline precipitate, typically as flat diamondoid crystals, which are suitable for further processing.[ citation needed ]

Dibasic calcium phosphate dihydrate is formed in "brushite" calcium phosphate cements (CPC's), which have medical applications. An example of the overall setting reaction in the formation of "β-TCP/MCPM" (β-tricalcium phosphate/monocalcium phosphate) calcium phosphate cements is: [4]

Ca3(PO4)2 + Ca(H2PO4)2•H2O + 7 H2O → 4 CaHPO4•2H2O
A portion of the lattice of dicalcium phosphate dihydrate, highlighting the 8-coordinated Ca center and the location of the protons on three ligands (green = calcium, red = oxygen, orange = phosphorus, white = hydrogen) CaHPO4(H2O)2portion.jpg
A portion of the lattice of dicalcium phosphate dihydrate, highlighting the 8-coordinated Ca center and the location of the protons on three ligands (green = calcium, red = oxygen, orange = phosphorus, white = hydrogen)

Structure

Three forms of dicalcium phosphate are known:

The structure of the anhydrous and dihydrated forms has been determined by X-ray crystallography, and the structure of the monohydrate was determined by electron crystallography. The dihydrate [5] (shown in table above) as well as the monohydrate, [6] adopt layered structures.

Uses and occurrence

Dibasic calcium phosphate is mainly used as a dietary supplement in prepared breakfast cereals, dog treats, enriched flour, and noodle products. It is also used as a tableting agent in some pharmaceutical preparations, including some products meant to eliminate body odor. Dibasic calcium phosphate is also found in some dietary calcium supplements (e.g., Bonexcin). It is used in poultry feed. It is also used in some toothpastes as a tartar control agent. [7]

Heating dicalcium phosphate gives dicalcium diphosphate, a useful polishing agent:

2 CaHPO4 → Ca2P2O7 + H2O

In the dihydrate (brushite) form, it is found in some kidney stones and dental calculi. [8] [3]

See also

References

  1. 1 2 Corbridge, D. E. C. (1995). "Phosphates". Phosphorus - an Outline of its Chemistry, Biochemistry and Uses. Studies in Inorganic Chemistry. Vol. 20. pp. 169–305. doi:10.1016/B978-0-444-89307-9.50008-8. ISBN   9780444893079.
  2. Salinas, Antonio J.; Vallet-Regí, María (2013). "Bioactive ceramics: From bone grafts to tissue engineering". RSC Advances. 3 (28): 11116. Bibcode:2013RSCAd...311116S. doi:10.1039/C3RA00166K.
  3. 1 2 Rey, C.; Combes, C.; Drouet, C.; Grossin, D. (2011). "Bioactive Ceramics: Physical Chemistry". Comprehensive Biomaterials. pp. 187–221. doi:10.1016/B978-0-08-055294-1.00178-1. ISBN   9780080552941.
  4. Tamimi, Faleh; Sheikh, Zeeshan; Barralet, Jake (2012). "Dicalcium phosphate cements: Brushite and monetite". Acta Biomaterialia. 8 (2): 474–487. doi:10.1016/j.actbio.2011.08.005. PMID   21856456.
  5. Curry, N. A.; Jones, D. W. (1971). "Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: A neutron-diffraction investigation". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 3725. doi:10.1039/J19710003725.
  6. Lu, Bing-Qiang; Willhammar, Tom; Sun, Ben-Ben; Hedin, Niklas; Gale, Julian D.; Gebauer, Denis (2020-03-24). "Introducing the crystalline phase of dicalcium phosphate monohydrate". Nature Communications. 11 (1): 1546. Bibcode:2020NatCo..11.1546L. doi:10.1038/s41467-020-15333-6. ISSN   2041-1723. PMC   7093545 . PMID   32210234.
  7. Schrödter, Klaus; Bettermann, Gerhard; Staffel, Thomas; Wahl, Friedrich; Klein, Thomas; Hofmann, Thomas (2008). "Phosphoric Acid and Phosphates". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a19_465.pub3. ISBN   978-3527306732. S2CID   94458523.
  8. Pak, Charles Y.C.; Poindexter, John R.; Adams-Huet, Beverley; Pearle, Margaret S. (2003). "Predictive value of kidney stone composition in the detection of metabolic abnormalities". The American Journal of Medicine. 115 (1): 26–32. doi:10.1016/S0002-9343(03)00201-8. PMID   12867231.