Oil-based mud

Last updated

Oil-based mud [1] is a drilling fluid used in drilling engineering. It is composed of oil as the continuous phase and water as the dispersed phase in conjunction with emulsifiers, wetting agents and gellants. The oil base can be diesel, kerosene, fuel oil, selected crude oil or mineral oil.

The requirements are a gravity of 36–37 API, a flash point of 180 °F (82 °C), fire point of 200 °F (93 °C) and an aniline point of 140 °F (60 °C).

Emulsifiers are important to oil-based mud due to the likelihood of contamination. The water phase of oil-based mud can be freshwater, or a solution of sodium or calcium chloride. The external phase is oil and does not allow the water to contact the formation. The shales don't become water wet.

Poor stability of the emulsion results in the two layers separating into two distinct layers. The advantages are:

  1. high drilling rates
  2. lowered drill pipe torque and drag,
  3. less bit balling and
  4. reduction in differential sticking.

Oil-based muds are expensive, but are worth the cost when drilling through:

  1. troublesome shales that would otherwise swell and disperse in water based mud e.g. smectite,
  2. to drill deep, high-temperature holes that dehydrate water-based mud,
  3. to drill water-soluble zones and
  4. to drill producing zones.

The disadvantages of using oil-based mud, especially in wildcat wells are:

  1. Inability to analyze oil shows in cuttings, because the oil-based mud has fluorescence confusing with the original oil formation.
  2. Contamination samples of cuttings, cores, sidewall cores for geochemical analysis of TOC and masks the real determination of API gravity due to this contamination.
  3. Contaminate areas of freshwater aquifers causing environmental damage.
  4. Disposal of cuttings in an appropriate place to isolate possible environmental contamination.

This mud type can be used as a completion and workover fluid, a spotting fluid to relieve a stuck pipe and as packer or casing fluid. They are very good for "Gumbo" shales. The mud weight can be controlled from 7–22 lbs/gal. It is sensitive to temperature but does not dehydrate as in the case of water based mud as mentioned before. It has no limit on the drilled solids concentration. The water phase should be maintained above a pH of 7. Stability of the emulsion depends on the alkaline value.

Related Research Articles

An emulsion is a mixture of two or more liquids that are normally immiscible owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid is dispersed in the other. Examples of emulsions include vinaigrettes, homogenized milk, liquid biomolecular condensates, and some cutting fluids for metal working.

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and or gas

An oil well is a drillhole boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve that is then mounted with an extraction device such as a pumpjack which allows extraction from the reserve. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in hard to reach areas, e.g., when creating offshore oil platforms. The process of modern drilling for wells first started in the 19th century, but was made more efficient with advances to oil drilling rigs during the 20th century.

In petroleum exploration and development, formation evaluation is used to determine the ability of a borehole to produce petroleum. Essentially, it is the process of "recognizing a commercial well when you drill one".

<span class="mw-page-title-main">Cutting fluid</span> Coolants and lubricants used in metalworking

Cutting fluid is a type of coolant and lubricant designed specifically for metalworking processes, such as machining and stamping. There are various kinds of cutting fluids, which include oils, oil-water emulsions, pastes, gels, aerosols (mists), and air or other gases. Cutting fluids are made from petroleum distillates, animal fats, plant oils, water and air, or other raw ingredients. Depending on context and on which type of cutting fluid is being considered, it may be referred to as cutting fluid, cutting oil, cutting compound, coolant, or lubricant.

Well logging, also known as borehole logging is the practice of making a detailed record of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface or on physical measurements made by instruments lowered into the hole. Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

A mud engineer works on an oil well or gas well drilling rig, and is responsible for ensuring the properties of the drilling fluid, also known as drilling mud, are within designed specifications.

A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

<span class="mw-page-title-main">Cream (pharmacy)</span>

A cream is a preparation usually for application to the skin. Creams for application to mucous membranes such as those of the rectum or vagina are also used. Creams may be considered pharmaceutical products as even cosmetic creams are based on techniques developed by pharmacy and unmedicated creams are highly used in a variety of skin conditions (dermatoses). The use of the finger tip unit concept may be helpful in guiding how much topical cream is required to cover different areas.

<span class="mw-page-title-main">Drilling fluid</span> Aid for drilling boreholes into the ground

In geotechnical engineering, drilling fluid, also called drilling mud, is used to aid the drilling of boreholes into the earth. Often used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells. One of the functions of drilling mud is to carry cuttings out of the hole.

In the upstream oil industry, a gas–oil separation plant (GOSP) is temporary or permanent facilities that separate wellhead fluids into constituent vapor (gas) and liquid components.

<span class="mw-page-title-main">Shale shakers</span>

Shale shakers are components of drilling equipment used in many industries, such as coal cleaning, mining, oil and gas drilling.They are the first phase of a solids control system on a drilling rig, and are used to remove large solids (cuttings) from the drilling fluid ("mud").

<span class="mw-page-title-main">Drill cuttings</span> Fragments of rock resulting from drilling

Drill cuttings are broken bits of solid material removed from a borehole drilled by rotary, percussion, or auger methods and brought to the surface in the drilling mud. Boreholes drilled in this way include oil or gas wells, water wells, and holes drilled for geotechnical investigations or mineral exploration.

Underbalanced drilling, or UBD, is a procedure used to drill oil and gas wells where the pressure in the wellbore is kept lower than the static pressure of the formation being drilled. As the well is being drilled, formation fluid flows into the wellbore and up to the surface. This is the opposite of the usual situation, where the wellbore is kept at a pressure above the formation to prevent formation fluid entering the well. In such a conventional "overbalanced" well, the invasion of fluid is considered a kick, and if the well is not shut-in it can lead to a blowout, a dangerous situation. In underbalanced drilling, however, there is a "rotating head" at the surface - essentially a seal that diverts produced fluids to a separator while allowing the drill string to continue rotating.

<span class="mw-page-title-main">API oil–water separator</span>

An API oil–water separator is a device designed to separate gross amounts of oil and suspended solids from industrial wastewater produced at oil refineries, petrochemical plants, chemical plants, natural gas processing plants and other industrial oily water sources. The API separator is a gravity separation device designed by using Stokes Law to define the rise velocity of oil droplets based on their density and size. The design is based on the specific gravity difference between the oil and the wastewater because that difference is much smaller than the specific gravity difference between the suspended solids and water. The suspended solids settles to the bottom of the separator as a sediment layer, the oil rises to top of the separator and the cleansed wastewater is the middle layer between the oil layer and the solids.

A dispersant or a dispersing agent is a substance, typically a surfactant, that is added to a suspension of solid or liquid particles in a liquid to improve the separation of the particles and to prevent their settling or clumping.

<span class="mw-page-title-main">Defoamer</span> Chemical additive that reduces and hinders the formation of foam in liquids

A defoamer or an anti-foaming agent is a chemical additive that reduces and hinders the formation of foam in industrial process liquids. The terms anti-foam agent and defoamer are often used interchangeably. Strictly speaking, defoamers eliminate existing foam and anti-foamers prevent the formation of further foam. Commonly used agents are insoluble oils, polydimethylsiloxanes and other silicones, certain alcohols, stearates and glycols. The additive is used to prevent formation of foam or is added to break a foam already formed.

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation gas or fluid (hydrocarbons), usually referred to as kick, from entering into the wellbore during drilling or well interventions.

Emulsified Fuels are emulsions composed of water and a combustible liquid, either oil or a fuel. Emulsions are a particular example of a dispersion comprising a continuous and a dispersed phase. The most commonly used emulsion fuel is water-in-diesel emulsion. In the case of emulsions, both phases are the immiscible liquids, oil and water. Emulsion fuels can be either a microemulsion or an ordinary emulsion. The essential differences between the two are stability and particle size distribution. Microemulsions are isotropic whereas macroemulsions are prone to settling and changes in particle size over time. Both use surfactants and can be either water-in-oil, or oil-in-water or bicontinuous.

Macroemulsions are dispersed liquid-liquid, thermodynamically unstable systems with particle sizes ranging from 1 to 100 μm, which, most often, do not form spontaneously. Macroemulsions scatter light effectively and therefore appear milky, because their droplets are greater than a wavelength of light. They are part of a larger family of emulsions along with miniemulsions. As with all emulsions, one phase serves as the dispersing agent. It is often called the continuous or outer phase. The remaining phase(s) are disperse or inner phase(s), because the liquid droplets are finely distributed amongst the larger continuous phase droplets. This type of emulsion is thermodynamically unstable, but can be stabilized for a period of time with applications of kinetic energy. Surfactants are used to reduce the interfacial tension between the two phases, and induce macroemulsion stability for a useful amount of time. Emulsions can be stabilized otherwise with polymers, solid particles or proteins.

<span class="mw-page-title-main">Jean-Louis Salager</span>

Jean-Louis Salager was born in Montpellier, France, on May 22, 1944. He obtained the titles of BSc. in chemistry (1966) and chemical engineer (1967) at the University of Nancy (France), MSc. in chemical engineering (1970) and PhD in chemical engineering (1975) at the University of Texas and postdoctorate at the University of Texas (1977–1978). Admitted as assistant professor at the School of Chemical Engineering Universidad de Los Andes, Mérida, Venezuela (1970), where he recently obtained the professor emeritus category. He has supervised over 100 undergraduate and 60 MSc & Dr/PhD dissertations. He has written 20 book chapters and more than 600 articles and communications. He is the second most cited researcher in Venezuelan institutions, according to the Google Scholar Scitations ranking published in 2015.

References

  1. Lyons, William C. (1996). Standard Handbook of Petroleum and Natural Gas Engineers. Houston Texas: Gulf Publishing Company.