Wellhead

Last updated

A wellhead is the component at the surface of an oil or gas well that provides the structural and pressure-containing interface for the drilling and production equipment.

Contents

Wellhead gas storage, Etzel Germany Wellhead Bohrlochkopf.JPG
Wellhead gas storage, Etzel Germany
Oil well Christmas tree Wellhead-dual completion.jpg
Oil well Christmas tree

The primary purpose of a wellhead is to provide the suspension point and pressure seals for the casing strings that run from the bottom of the hole sections to the surface pressure control equipment. [1]

While drilling the oil well, surface pressure control is provided by a blowout preventer (BOP). If the pressure is not contained during drilling operations by the column of drilling fluid, casings, wellhead, and BOP, a well blowout could occur.

When the well has been drilled, it is completed to provide an interface with the reservoir rock and a tubular conduit for the well fluids. The surface pressure control is provided by a Christmas tree, which is installed on top of the wellhead, with isolation valves and choke equipment to control the flow of well fluids during production.

Wellheads are typically welded onto the first string of casing, which has been cemented in place during drilling operations, to form an integral structure of the well. In exploration wells that are later abandoned, the wellhead may be recovered for refurbishment and re-use.

Offshore, where a wellhead is located on the production platform it is called a surface wellhead, and if located beneath the water then it is referred to as a subsea wellhead or mudline wellhead. [2] [3] [4] [5]

Components

The primary components of a wellhead system are:

Functions

A wellhead serves numerous functions, some of which are:

  1. Provide a means of casing suspension (Casing is the permanently installed pipe used to line the well hole for pressure containment and collapse prevention during the drilling phase).
  2. Provides a means of tubing suspension (Tubing is removable pipe installed in the well through which well fluids pass).
  3. Provides a means of pressure sealing and isolation between casing at surface when many casing strings are used.
  4. Provides pressure monitoring and pumping access to annuli between the different casing/tubing strings.
  5. Provides a means of attaching a blowout preventer during drilling.
  6. Provides a means of attaching a Christmas tree for production operations.
  7. Provides a reliable means of well access.
  8. Provides a means of attaching a well pump,

Design specification

The oil industry specifications for wellhead systems (materials, dimensions, test procedures and pressure ratings etc.) are :

  1. API 6A, 20th Edition, October 2010; Specification for Wellhead and Christmas Tree Equipment
  2. ISO 10423:2009 Wellhead and Christmas Tree Equipment

In general well heads are five nominal ratings of wellheads: 2, 3, 5, 10 and 15 (×1000) psi working pressure. They have an operating temperature range of −50 to +250 degrees Fahrenheit. They are used in conjunction with ring type seal gaskets.

In general the yield strength of the materials range from 36000 to 75000 psi.

See also

Related Research Articles

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and/or gas

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve and if necessary equipped with extraction devices such as pumpjacks. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in difficult-to-access locations, e.g., offshore. The process of modern drilling for wells first started in the 19th century but was made more efficient with advances to oil drilling rigs and technology during the 20th century.

<span class="mw-page-title-main">Wireline (cabling)</span> Technology used in oil and gas wells

In the oil and gas industry, the term wireline usually refers to the use of multi-conductor, single conductor or slickline cable, or "wireline", as a conveyance for the acquisition of subsurface petrophysical and geophysical data and the delivery of well construction services such as pipe recovery, perforating, plug setting and well cleaning and fishing. The subsurface geophysical and petrophysical information results in the description and analysis of subsurface geology, reservoir properties and production characteristics.

<span class="mw-page-title-main">Christmas tree (oil well)</span> Assembly of valves, spools, and fittings used to regulate the flow of fluids in an oil well

In petroleum and natural gas extraction, a Christmas tree, or tree, is an assembly of valves, casing spools, and fittings used to regulate the flow of pipes in an oil well, gas well, water injection well, water disposal well, gas injection well, condensate well, and other types of well.

<span class="mw-page-title-main">Casing hanger</span>

In petroleum production, the casing hanger is that portion of a wellhead assembly which provides support for the casing string when it is lowered into the wellbore. It serves to ensure that the casing is properly located. When the casing string has been run into the wellbore it is hung off, or suspended, by a casing hanger, which rests on a landing shoulder inside the casing spool. Casing hangers must be designed to take the full weight of the casing, and provide a seal between the casing hanger and the spool.

<span class="mw-page-title-main">Casing (borehole)</span>

Casing is a large diameter pipe that is assembled and inserted into a recently drilled section of a borehole. Similar to the bones of a spine protecting the spinal cord, casing is set inside the drilled borehole to protect and support the wellstream. The lower portion is typically held in place with cement. Deeper strings usually are not cemented all the way to the surface, so the weight of the pipe must be partially supported by a casing hanger in the wellhead.

Production tubing is a tube used in a wellbore through which production fluids are produced (travel).

<span class="mw-page-title-main">Blowout (well drilling)</span> Uncontrolled release of crude oil and/or natural gas from a well

A blowout is the uncontrolled release of crude oil and/or natural gas from an oil well or gas well after pressure control systems have failed. Modern wells have blowout preventers intended to prevent such an occurrence. An accidental spark during a blowout can lead to a catastrophic oil or gas fire.

<span class="mw-page-title-main">Blowout preventer</span> Specialized valve

A blowout preventer (BOP) is a specialized valve or similar mechanical device, used to seal, control and monitor oil and gas wells to prevent blowouts, the uncontrolled release of crude oil or natural gas from a well. They are usually installed in stacks of other valves.

<span class="mw-page-title-main">Drill stem test</span>

A drill stem test (DST) is a procedure for isolating and testing the pressure, permeability and productive capacity of a geological formation during the drilling of a well. The test is an important measurement of pressure behaviour at the drill stem and is a valuable way of obtaining information on the formation fluid and establishing whether a well has found a commercial hydrocarbon reservoir.

<span class="mw-page-title-main">Coiled tubing</span> Long metal pipe used in oil and gas wells

In the oil and gas industry, coiled tubing refers to a long metal pipe, normally 1 to 3.25 in in diameter which is supplied spooled on a large reel. It is used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells. Coiled tubing is often used to carry out operations similar to wirelining. The main benefits over wireline are the ability to pump chemicals through the coil and the ability to push it into the hole rather than relying on gravity. Pumping can be fairly self-contained, almost a closed system, since the tube is continuous instead of jointed pipe. For offshore operations, the 'footprint' for a coiled tubing operation is generally larger than a wireline spread, which can limit the number of installations where coiled tubing can be performed and make the operation more costly. A coiled tubing operation is normally performed through the drilling derrick on the oil platform, which is used to support the surface equipment, although on platforms with no drilling facilities a self-supporting tower can be used instead. For coiled tubing operations on sub-sea wells a mobile offshore drilling unit (MODU) e.g. semi-submersible, drillship etc. has to be utilized to support all the surface equipment and personnel, whereas wireline can be carried out from a smaller and cheaper intervention vessel. Onshore, they can be run using smaller service rigs, and for light operations a mobile self-contained coiled tubing rig can be used.

<span class="mw-page-title-main">Well intervention</span> Operation on a deteriorating oil well

A well intervention, or well work, is any operation carried out on an oil or gas well during, or at the end of, its productive life that alters the state of the well or well geometry, provides well diagnostics, or manages the production of the well.

<span class="mw-page-title-main">Workover</span> Any invasive oil well intervention

The term workover is used to refer to any kind of oil well intervention involving invasive techniques, such as wireline, coiled tubing or snubbing. More specifically, a workover refers to the expensive process of pulling and replacing completion or production hardware in order to extend the life of the well.

<span class="mw-page-title-main">Completion (oil and gas wells)</span> Last operation for oil and gas wells

Well completion is the process of making a well ready for production after drilling operations. This principally involves preparing the bottom of the hole to the required specifications, running in the production tubing and its associated down hole tools as well as perforating and stimulating as required. Sometimes, the process of running in and cementing the casing is also included. After a well has been drilled, should the drilling fluids be removed, the well would eventually close in upon itself. Casing ensures that this will not happen while also protecting the wellstream from outside incumbents, like water or sand.

Oilfield terminology refers to the jargon used by those working in fields within and related to the upstream segment of the petroleum industry. It includes words and phrases describing professions, equipment, and procedures specific to the industry. It may also include slang terms used by oilfield workers to describe the same.

In oil drilling, a casing head is a simple metal flange welded or screwed onto the top of the conductor pipe or the casing and forms part of the wellhead system for the well.

Oil well cementing equipment are essential for oil and gas exploration and are required oilfield equipment when drilling a well.

<span class="mw-page-title-main">Drilling riser</span>

A drilling riser is a conduit that provides a temporary extension of a subsea oil well to a surface drilling facility. Drilling risers are categorised into two types: marine drilling risers used with subsea blowout preventer (BOP) and generally used by floating drilling vessels; and tie-back drilling risers used with a surface BOP and generally deployed from fixed platforms or very stable floating platforms like a spar or tension leg platform (TLP).

<span class="mw-page-title-main">Offshore oil spill prevention and response</span>

Offshore oil spill prevention and response is the study and practice of reducing the number of offshore incidents that release oil or hazardous substances into the environment and limiting the amount released during those incidents.

References

Listen to this article (5 minutes)
Sound-icon.svg
This audio file was created from a revision of this article dated 9 June 2021 (2021-06-09), and does not reflect subsequent edits.