Geosteering

Last updated

Geosteering is the optimal placement of a wellbore based on the results of realtime downhole geological and geophysical logging measurements rather than three-dimensional targets in space. The objective is usually to keep a directional wellbore within a hydrocarbon pay zone defined in terms of its resistivity, density or even biostratigraphy. In mature areas, geosteering may be used to keep a wellbore in a particular section of a reservoir to minimize gas or water breakthrough and maximize economic production from the well. [1] In the process of drilling a borehole, geosteering is the act of adjusting the borehole position (inclination and azimuth angles) on the fly to reach one or more geological targets. These changes are based on geological information gathered while drilling. Originally only a projected target would be aimed for with crude directional tools. Now the advent of rotary steerable tools and an ever-increasing arsenal of geophysical tools enables well placement with ever-increasing accuracy. Typically a basic tool configuration will have directional and inclination sensors, along with a gamma ray tool. Other options are neutron density, look ahead seismic, downhole pressure readings et al. Due to the vast volume of data generated, especially by imaging tools, the data transmitted to surface is a carefully selected fraction of what is available. Data is collected in memory for a data dump when back on surface with the tool.

Well drilling

Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring. Drilling for the exploration of the nature of the material underground is best described as borehole drilling.

Azimuth the angle between a reference plane and a point

An azimuth is an angular measurement in a spherical coordinate system. The vector from an observer (origin) to a point of interest is projected perpendicularly onto a reference plane; the angle between the projected vector and a reference vector on the reference plane is called the azimuth.

Contents

History

Geosteering only practically became possible with the advent of deep reading 2 MHz resistivity LWD tools from the major LWD vendors (BakerHughes Reservoir Navigation Tool, SperrySun and Schlumberger) and other tools in the early 1990s, and the forward modeling software from a number of vendors capable of predicting resistivity tool responses for different relative angles and formation resistivities. Prior to this, Gamma ray gave some bed information, but was rarely used to dynamically adjust the well path in relation to the best oil saturation and porosity. The advent of nuclear tools for porosity and azimuthally sensitive gamma and resistivity tools, improved the ability to infer whether the wellbore should be steered up or down. The development of the Troll Oilfield by Norsk Hydro (Later Statoil and Equinor) would not have been possible without the ability to precisely geosteer within a 4-meter thick horizon to avoid gas above and water below.

Description

From 2D and 3D models of underground substructures, deviated wells (2D and 3D) are planned in advance to achieve specific goals: exploration, fluids production, fluids injection or technical.

A well plan is a continuous succession of straight and curved lines representing the geometrical figure of the expected well path. A well plan is always projected on vertical and horizontal maps.

While the borehole is being drilled according to the well plan, new geological information is gathered from mud logging, measurement while drilling (MWD) and logging while drilling (LWD). These usually show some differences from what is expected from the model. As the model is continuously updated with the new geological information (formation evaluation) and the borehole position (well deviation survey), changes start to appear in the geological substructures and can lead to the well plan being updated to reach the corrected geological targets. [2]

A drilling rig is used to create a borehole or well in the earth's sub-surface, for example in order to extract natural resources such as gas or oil. During such drilling, data is acquired from the drilling rig sensors for a range of purposes such as: decision-support to monitor and manage the smooth operation of drilling; to make detailed records of the geologic formations penetrated by a borehole; to generate operations statistics and performance benchmarks such that improvements can be identified, and to provide well planners with accurate historical operations-performance data with which to perform statistical risk analysis for future well operations. The terms measurement while drilling (MWD), and logging while drilling (LWD) are not used consistently throughout the industry. Although these terms are related, within the context of this section, the term MWD refers to directional-drilling measurements, e.g., for decision support for the smooth operation of the drilling, while LWD refers to measurements concerning the geological formation made while drilling.

Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA).

In petroleum exploration and development, formation evaluation is used to determine the ability of a borehole to produce petroleum. Essentially, it is the process of "recognizing a commercial well when you drill one".

The following data can be used for the geosteering: MWD, LWD, Image logs, 2D and 3D seismic data, geological models.

See also

Oil well boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface

An oil well is a boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released along with the oil. A well that is designed to produce only gas may be termed a gas well.

Directional drilling

Directional drilling is the practice of drilling non-vertical wells. It can be broken down into four main groups: oilfield directional drilling, utility installation directional drilling, directional boring, and surface in seam (SIS), which horizontally intersects a vertical well target to extract coal bed methane.

Well logging, also known as borehole logging is the practice of making a detailed record of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface or on physical measurements made by instruments lowered into the hole. Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

Related Research Articles

Wireline (cabling) lunité travail au cable

In the oil and gas industry, the term wireline usually refers to a cabling technology used by operators of oil and gas wells to lower equipment or measurement devices into the well for the purposes of well intervention, reservoir evaluation, and pipe recovery.

In geophysics, vertical seismic profile (VSP) is a technique of seismic measurements used for correlation with surface seismic data. The defining characteristic of a VSP is that either the energy source, or the detectors are in a borehole. In the most common type of VSP, Hydrophones, or more often geophones or accelerometers, in the borehole record reflected seismic energy originating from a seismic source at the surface.

Mud logging

Mud logging is the creation of a detailed record of a borehole by examining the cuttings of rock brought to the surface by the circulating drilling medium. Mud logging is usually performed by a third-party mud logging company. This provides well owners and producers with information about the lithology and fluid content of the borehole while drilling. Historically it is the earliest type of well log. Under some circumstances compressed air is employed as a circulating fluid, rather than mud. Although most commonly used in petroleum exploration, mud logging is also sometimes used when drilling water wells and in other mineral exploration, where drilling fluid is the circulating medium used to lift cuttings out of the hole. In hydrocarbon exploration, hydrocarbon surface gas detectors record the level of natural gas brought up in the mud. A mobile laboratory is situated by the mud logging company near the drilling rig or on deck of an offshore drilling rig, or on a drill ship.

Petrophysics is the study of physical and chemical rock properties and their interactions with fluids.

Drilling engineering is a subset of petroleum engineering.

Spontaneous potential log, commonly called the self potential log or SP log, is a passive measurement taken by oil industry well loggers to characterise rock formation properties. The log works by measuring small electric potentials between depths with in the borehole and a grounded electrode at the surface. Conductive bore hole fluids are necessary to create a SP response, so the SP log cannot be used in nonconductive drilling muds or air filled holes.

Underbalanced drilling, or UBD, is a procedure used to drill oil and gas wells where the pressure in the wellbore is kept lower than the static pressure then the formation being drilled. As the well is being drilled, formation fluid flows into the wellbore and up to the surface. This is the opposite of the usual situation, where the wellbore is kept at a pressure above the formation to prevent formation fluid entering the well. In such a conventional "overbalanced" well, the invasion of fluid is considered a kick, and if the well is not shut-in it can lead to a blowout, a dangerous situation. In underbalanced drilling, however, there is a "rotating head" at the surface - essentially a seal that diverts produced fluids to a separator while allowing the drill string to continue rotating.

A rotary steerable system (RSS) is a form of drilling technology used in directional drilling. It employs the use of specialized downhole equipment to replace conventional directional tools such as mud motors. They are generally programmed by the measurement while drilling (MWD) engineer or directional driller who transmits commands using surface equipment which the tool responds to, and gradually steers into the desired direction. In other words, a tool designed to drill directionally with continuous rotation from the surface, eliminating the need to "slide" a mud motor.

Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging

A caliper log is a well logging tool that provides a continuous measurement of the size and shape of a borehole along its depth and is commonly used in hydrocarbon exploration when drilling wells. The measurements that are recorded can be an important indicator of cave ins or shale swelling in the borehole, which can affect the results of other well logs.

Oilfield terminology refers to the jargon used by those working in fields within and related to the upstream segment of the petroleum industry. It includes words and phrases describing professions, equipment, and procedures specific to the industry. It may also include slang terms used by oilfield workers to describe the same.

A Deviation survey, more generally known in the oil industry as simply a 'survey', is the measurement of a borehole's departure from the vertical, measured in degrees (°).

A cement bond log documents the evaluation of the integrity of cement work performed on an oil well. In the process of drilling and completing a well, cement is injected through the wellbore and rises up the annulus between the steel casing and the formation.

A bottom hole assembly (BHA) is a component of a drilling rig. It is the lowest part of the drill string, extending from the bit to the drill pipe. The assembly can consist of drill collars, subs such as stabilizers, reamers, shocks, hole-openers, and the bit sub and bit.

IntelliServ is a National Oilwell Varco brand that manufactures and sells a broadband networked drilling string system used to transmit downhole information to the surface in a drilling operation.

References

  1. "geosteering - Schlumberger Oilfield Glossary". www.glossary.oilfield.slb.com. Archived from the original on 14 October 2017. Retrieved 26 April 2018.
  2. "Oilfield Glossary". Archived from the original on June 7, 2011. Retrieved April 27, 2011.