Associated petroleum gas

Last updated

Associated petroleum gas (APG), or associated gas, is a form of natural gas which is found with deposits of petroleum, either dissolved in the oil or as a free "gas cap" above the oil in the reservoir. [1] [2] The gas can be utilized in a number of ways after processing: sold and included in the natural-gas distribution networks, used for on-site electricity generation with engines [3] or turbines, reinjected for secondary recovery and used in enhanced oil recovery, converted from gas to liquids producing synthetic fuels, or used as feedstock for the petrochemical industry, [4] but much of it worldwide is flared.

Contents

Composition

APG is primarily a mixture of hydrocarbon molecules that are classified as alkanes. The following table lists typical percentages of the major alkanes in APG, and includes the typical levels of nitrogen and carbon dioxide. Water (wet gas) and hydrogen sulfide (sour gas) contaminate APG at more varied levels. Helium is present in significant amounts in some cases, and is a relatively valuable by-product. APG is processed to separate out most other components before the methane-rich gas is sold into natural-gas distribution networks.

ComponentChemical formulaVolume fraction (%)Weight fraction (%) [5]
Methane CH
4
8160
Ethane C
2
H
6
5.57.7
Propane C
3
H
8
6.613.5
Butane C
4
H
10
4.010.8
Pentane C
5
H
12
1.44.8
Nitrogen N
2
1.01.3
Carbon dioxide CO20.170.33

Uses

Like crude oil, APG is both a primary energy resource and a primary commodity that enables much of the modern world economy. Statistics from the International Energy Agency show that the natural-gas supplies steadily increased during 1990-2017 to meet the demands of expanding global population and consumerism. [6] APG is nevertheless a finite fossil resource, and the crossing of planetary boundaries could impose earlier limits on its value and usefulness. [7]

Following extraction, petroleum companies prefer to transport both crude oil and APG to their respective refiners for processing and distribution to consumers. Most modern wells are planned to include gas pipeline transport, but some oil wells are drilled only to get the more lucrative oil, in which case the options are to locally use, process, or dispose of the APG. A traditional local use is to re-inject the gas for storage, and to re-pressurize the well to extend the oil production lifetime. On-site processing with various mobile systems also exist for producing natural gas liquids (NGL), compressed natural gas (CNG), liquified natural gas (LNG), and gas to liquids (GTL) fuels that can be transported by truck or ship. Electricity generation from on-site microturbines and engines is also compatible with minimally processed APG. [8] :50–54

Flaring

Historically APG was, and still may be, a waste product from the petroleum extraction industry. It may be a stranded gas reserve due to the remote location of the oil field, either at sea or on land. The gas is then simply vented or, preferably, burnt off in gas flares. When this occurs it is referred to as flare gas. [9]

APG flaring is controversial since it is a pollutant, a source of global warming [10] and a waste of a valuable fuel source. APG is flared in many countries where there are significant power shortages. [11] In the United Kingdom, gas may not be flared without written consent from the UK government to prevent unnecessary waste and protect the environment. [12] Russia is the world leader and contributed 30 percent of total global APG flared in 2009. [13]

The World Bank estimates that over 150 billion cubic metres of natural gas are flared or vented annually. Flared natural gas is worth approximately 30.6 billion dollars and equivalent to 25 percent of the United States' yearly gas consumption or 30 percent of the European Union's annual gas consumption. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or exemplified by the odors of gasoline and lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers. In the fossil fuel industries, hydrocarbon refers to the naturally occurring petroleum, natural gas and coal, and to their hydrocarbon derivatives and purified forms. Combustion of hydrocarbons is the main source of the world's energy. Petroleum is the dominant raw-material source for organic commodity chemicals such as solvents and polymers. Most anthropogenic (human-generated) emissions of greenhouse gases are carbon dioxide from the burning of fossil fuels, and methane released from natural gas handling and from agriculture.

<span class="mw-page-title-main">Natural gas</span> Gaseous fossil fuel

Natural gas is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Usually low levels of trace gases like carbon dioxide, nitrogen, hydrogen sulfide, and helium are also present. Natural gas is colorless and odorless, so odorizers such as mercaptan, which smells like sulfur or rotten eggs, are commonly added to natural gas supplies for safety so that leaks can be readily detected.

<span class="mw-page-title-main">Petroleum</span> Naturally occurring flammable liquid

Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both prolonged heat and pressure.

<span class="mw-page-title-main">Biogas</span> Gases produced by decomposing organic matter

Biogas is a mixture of gases, primarily consisting of methane, carbon dioxide and hydrogen sulphide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste and food waste. It is a renewable energy source.

Unconventional oil is petroleum produced or extracted using techniques other than the conventional method. Industry and governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil reserves. Unconventional oil and gas have already made a dent in international energy linkages by reducing US energy import dependency.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen or water gas into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut für Kohlenforschung in Mülheim an der Ruhr, Germany, in 1925.

<span class="mw-page-title-main">Landfill gas</span> Gaseous fossil fuel

Landfill gas is a mix of different gases created by the action of microorganisms within a landfill as they decompose organic waste, including for example, food waste and paper waste. Landfill gas is approximately forty to sixty percent methane, with the remainder being mostly carbon dioxide. Trace amounts of other volatile organic compounds (VOCs) comprise the remainder (<1%). These trace gases include a large array of species, mainly simple hydrocarbons.

<span class="mw-page-title-main">Global Methane Initiative</span>

The Global Methane Initiative (GMI) is a voluntary, international partnership that brings together national governments, private sector entities, development banks, NGOs and other interested stakeholders in a collaborative effort to reduce methane gas emissions and advance methane recovery and use as a clean energy source. National governments are encouraged to join GMI as Partner Countries, while other non-State organizations may join GMI's extensive Project Network. As a public-private initiative, GMI creates an international platform to build capacity, development methane abatement strategies, engage in technology transfer, and remove political and economic barriers to project development for emissions reduction.

<span class="mw-page-title-main">Gas flare</span>

A gas flare, alternatively known as a flare stack,flare boom, ground flare, or flare pit is a gas combustion device used in places such as petroleum refineries, chemical plants and natural gas processing plants, oil or gas extraction sites having oil wells, gas wells, offshore oil and gas rigs and landfills.

<span class="mw-page-title-main">Gas to liquids</span> Conversion of natural gas to liquid petroleum products

Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons, such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels. Two general strategies exist: (i) direct partial combustion of methane to methanol and (ii) Fischer–Tropsch-like processes that convert carbon monoxide and hydrogen into hydrocarbons. Strategy ii is followed by diverse methods to convert the hydrogen-carbon monoxide mixtures to liquids. Direct partial combustion has been demonstrated in nature but not replicated commercially. Technologies reliant on partial combustion have been commercialized mainly in regions where natural gas is inexpensive.

<span class="mw-page-title-main">Methane</span> Saturated hydrocarbon with formula CH4

Methane ( MEH-thayn, MEE-thayn) is a chemical compound with the chemical formula CH4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

<span class="mw-page-title-main">Fuel</span> Energy released from a source

A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy, such as nuclear energy.

<span class="mw-page-title-main">Environmental impact of the energy industry</span>

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.

<span class="mw-page-title-main">Environmental impact of the petroleum industry</span>

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of rapidly increasing human population, creativity, and consumerism.

<span class="mw-page-title-main">Landfill gas utilization</span>

Landfill gas utilization is a process of gathering, processing, and treating the methane or another gas emitted from decomposing garbage to produce electricity, heat, fuels, and various chemical compounds. After fossil fuel and agriculture, landfill gas is the third largest human generated source of methane. Compared to CO2, methane is 25 times more effective as a greenhouse gas. It is important not only to control its emission but, where conditions allow, use it to generate energy, thus offsetting the contribution of two major sources of greenhouse gases towards climate change. The number of landfill gas projects, which convert the gas into power, went from 399 in 2005 to 519 in 2009 in the United States, according to the US Environmental Protection Agency. These projects are popular because they control energy costs and reduce greenhouse gas emissions. These projects collect the methane gas and treat it, so it can be used for electricity or upgraded to pipeline-grade gas. These projects power homes, buildings, and vehicles.

Syngas to gasoline plus (STG+) is a thermochemical process to convert natural gas, other gaseous hydrocarbons or gasified biomass into drop-in fuels, such as gasoline, diesel fuel or jet fuel, and organic solvents.

<span class="mw-page-title-main">Natural gas in the United States</span>

Natural gas was the United States' largest source of energy production in 2016, representing 33 percent of all energy produced in the country. Natural gas has been the largest source of electrical generation in the United States since July 2015.

<span class="mw-page-title-main">Flash-gas (petroleum)</span>

In an oil and gas production, flash-gas is a spontaneous vapor that is produced from the heating or depressurization of the extracted oil mixture during different phases of production. Flash evaporation, or flashing, is the process of volatile components suddenly vaporizing from their liquid state. This often happens during the transportation of petroleum products through pipelines and into vessels, such as when the stream from a common separation unit flows into an on-site atmospheric storage tank. Vessels that are used to intentionally “flash” a mixture of gas and saturated liquids are aptly named "flash drums." A type of vapor-liquid separator. A venting apparatus is used in these vessels to prevent damage due to increasing pressure, extreme cases of this are referred to as boiling liquid expanding vapor explosion (BLEVE).

<span class="mw-page-title-main">Gas venting</span> Disposal of unwanted methane gas from fossil fuels

Gas venting, more specifically known as natural-gas venting or methane venting, is the intentional and controlled release of gases containing alkane hydrocarbons - predominately methane - into earth's atmosphere. It is a widely used method for disposal of unwanted gases which are produced during the extraction of coal and crude oil. Such gases may lack value when they are not recyclable into the production process, have no export route to consumer markets, or are surplus to near-term demand. In cases where the gases have value to the producer, substantial amounts may also be vented from the equipment used for gas collection, transport, and distribution.

<span class="mw-page-title-main">Routine flaring</span> Disposal of unwanted gas during extraction

Routine flaring, also known as production flaring, is a method and current practice of disposing of large unwanted amounts of associated petroleum gas (APG) during crude oil extraction. The gas is first separated from the liquids and solids downstream of the wellhead, then released into a flare stack and combusted into earth's atmosphere. Where performed, the unwanted gas has been deemed unprofitable, and may be referred to as stranded gas, flare gas, or simply as "waste gas". Routine flaring is not to be confused with safety flaring, maintenance flaring, or other flaring practices characterized by shorter durations or smaller volumes of gas disposal.

References

  1. Røland, Tonje Hulbak (2010). Associated Petroleum Gas in Russia: Reasons for Non-utilization (PDF). FNI Report 13/2010 (Report). Lysaker: Fridtjof Nansen Institute. p. 53. Archived from the original (PDF) on 2011-07-20. Retrieved 2018-10-26.
  2. "Glossary of terms used in Petroleum Reserves/Resources Definitions" (PDF). The Society of Petroleum Engineers. 2005. Retrieved 24 December 2013.
  3. "Associated Petroleum Gas in Gas Engines". Clarke Energy. Retrieved 25 November 2011.
  4. (Roland 2010 cites Knizhnikov, A. and N Poussenkova (2009) ‘Russian Associated Gas Utilization: Problems and Prospects’, Annual Project Report Environment and Energy: International Context Issue 1. Moscow: World Wildlife Fund and Institute of World Economy and International Relations of the Russian Academy of Sciences
  5. Попутный нефтяной газ: основные способы переработки – утилизации ПНГ [Associated Petroleum Gas (APG): Basic Methods of Processing and Utilization] (in Russian). New Generation. 2013-05-05.
  6. "Global Data and Statistics". International Energy Agency . Retrieved 10 January 2020.
  7. Linnenluecke, Martina K.; Birt, Jac; Lyon John; Sidhu, Baljit K. (2015), "Planetary boundaries: implications for asset impairment", Accounting & Finance, 55 (4): 911–929, doi: 10.1111/acfi.12173
  8. "Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts" (PDF). U.S. Department of Energy. 2019-06-01. Retrieved 2019-12-29.
  9. "Flare gas - Oilfield Glossary". Schlumberger Limited. Retrieved 20 May 2011.
  10. "Gas flaring in Nigeria" (PDF) (Press release). London. Friends of the Earth. October 2004. Retrieved 20 May 2011.
  11. Walker, Andrew (13 January 2009). "Nigeria's gas profits go up in smoke". Nigeria. BBC News. Retrieved 20 May 2011.
  12. "Atmospheric Emission - Flaring". Oil & Gas UK. Retrieved 24 December 2013.
  13. "Flaring Up - Companies Pay High Costs to be Green". Oil&Gas Eurasia. 26 April 2009. Archived from the original on 24 July 2011. Retrieved 20 May 2011.
  14. "World Bank, GGFR Partners Unlock Value of Wasted Gas". World Bank Group. 14 December 2009. Retrieved 17 March 2010.